Matches in SemOpenAlex for { <https://semopenalex.org/work/W3033502122> ?p ?o ?g. }
- W3033502122 abstract "Diffusion-weighted imaging (DWI) is increasingly used to guide the clinical management of patients with breast tumours. However, accurate tumour characterization with DWI and the corresponding apparent diffusion coefficient (ADC) maps are challenging due to their limited resolution. This study aimed to produce super-resolution (SR) ADC images and to assess the clinical utility of these SR images by performing a radiomic analysis for predicting the histologic grade and Ki-67 expression status of breast cancer. To this end, 322 samples of dynamic enhanced magnetic resonance imaging (DCE-MRI) and the corresponding DWI data were collected. A SR generative adversarial (SRGAN) and an enhanced deep SR (EDSR) network along with the bicubic interpolation were utilized to generate SR-ADC images from which radiomic features were extracted. The dataset was randomly separated into a development dataset (n = 222) to establish a deep SR model using DCE-MRI and a validation dataset (n = 100) to improve the resolution of ADC images. This random separation of datasets was performed 10 times, and the results were averaged. The EDSR method was significantly better than the SRGAN and bicubic methods in terms of objective quality criteria. Univariate and multivariate predictive models of radiomic features were established to determine the area under the receiver operating characteristic curve (AUC). Individual features from the tumour SR-ADC images showed a higher performance with the EDSR and SRGAN methods than with the bicubic method and the original images. Multivariate analysis of the collective radiomics showed that the EDSR- and SRGAN-based SR-ADC images performed better than the bicubic method and original images in predicting either Ki-67 expression levels (AUCs of 0.818 and 0.801, respectively) or the tumour grade (AUCs of 0.826 and 0.828, respectively). This work demonstrates that in addition to improving the resolution of ADC images, deep SR networks can also improve tumour image-based diagnosis in breast cancer." @default.
- W3033502122 created "2020-06-12" @default.
- W3033502122 creator A5003415305 @default.
- W3033502122 creator A5006907190 @default.
- W3033502122 creator A5009607229 @default.
- W3033502122 creator A5014837150 @default.
- W3033502122 creator A5048665199 @default.
- W3033502122 creator A5059443966 @default.
- W3033502122 creator A5076042378 @default.
- W3033502122 date "2020-06-10" @default.
- W3033502122 modified "2023-10-17" @default.
- W3033502122 title "Generative adversarial network‐based super‐resolution of diffusion‐weighted imaging: Application to tumour radiomics in breast cancer" @default.
- W3033502122 cites W1885185971 @default.
- W3033502122 cites W1977451164 @default.
- W3033502122 cites W1981728876 @default.
- W3033502122 cites W2010871781 @default.
- W3033502122 cites W2112478842 @default.
- W3033502122 cites W2125962673 @default.
- W3033502122 cites W2128920415 @default.
- W3033502122 cites W2130232156 @default.
- W3033502122 cites W2132893003 @default.
- W3033502122 cites W2137935883 @default.
- W3033502122 cites W2140579625 @default.
- W3033502122 cites W2234908568 @default.
- W3033502122 cites W2273215959 @default.
- W3033502122 cites W2287391121 @default.
- W3033502122 cites W2526558307 @default.
- W3033502122 cites W2548436343 @default.
- W3033502122 cites W2586494677 @default.
- W3033502122 cites W2587341032 @default.
- W3033502122 cites W2618113379 @default.
- W3033502122 cites W2709402577 @default.
- W3033502122 cites W2726440677 @default.
- W3033502122 cites W2766451787 @default.
- W3033502122 cites W2767128594 @default.
- W3033502122 cites W2772641544 @default.
- W3033502122 cites W2774534004 @default.
- W3033502122 cites W2794977498 @default.
- W3033502122 cites W2803729568 @default.
- W3033502122 cites W2808495892 @default.
- W3033502122 cites W2886527657 @default.
- W3033502122 cites W2892235178 @default.
- W3033502122 cites W2910630672 @default.
- W3033502122 cites W2959938807 @default.
- W3033502122 cites W2963372104 @default.
- W3033502122 cites W2963470893 @default.
- W3033502122 cites W2964350391 @default.
- W3033502122 cites W2970722445 @default.
- W3033502122 cites W3101461304 @default.
- W3033502122 cites W54257720 @default.
- W3033502122 doi "https://doi.org/10.1002/nbm.4345" @default.
- W3033502122 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32521567" @default.
- W3033502122 hasPublicationYear "2020" @default.
- W3033502122 type Work @default.
- W3033502122 sameAs 3033502122 @default.
- W3033502122 citedByCount "16" @default.
- W3033502122 countsByYear W30335021222021 @default.
- W3033502122 countsByYear W30335021222022 @default.
- W3033502122 countsByYear W30335021222023 @default.
- W3033502122 crossrefType "journal-article" @default.
- W3033502122 hasAuthorship W3033502122A5003415305 @default.
- W3033502122 hasAuthorship W3033502122A5006907190 @default.
- W3033502122 hasAuthorship W3033502122A5009607229 @default.
- W3033502122 hasAuthorship W3033502122A5014837150 @default.
- W3033502122 hasAuthorship W3033502122A5048665199 @default.
- W3033502122 hasAuthorship W3033502122A5059443966 @default.
- W3033502122 hasAuthorship W3033502122A5076042378 @default.
- W3033502122 hasBestOaLocation W30335021222 @default.
- W3033502122 hasConcept C115961682 @default.
- W3033502122 hasConcept C121608353 @default.
- W3033502122 hasConcept C126322002 @default.
- W3033502122 hasConcept C126838900 @default.
- W3033502122 hasConcept C143409427 @default.
- W3033502122 hasConcept C149550507 @default.
- W3033502122 hasConcept C154945302 @default.
- W3033502122 hasConcept C2778559731 @default.
- W3033502122 hasConcept C2988773926 @default.
- W3033502122 hasConcept C2992283565 @default.
- W3033502122 hasConcept C37736160 @default.
- W3033502122 hasConcept C41008148 @default.
- W3033502122 hasConcept C530470458 @default.
- W3033502122 hasConcept C71924100 @default.
- W3033502122 hasConceptScore W3033502122C115961682 @default.
- W3033502122 hasConceptScore W3033502122C121608353 @default.
- W3033502122 hasConceptScore W3033502122C126322002 @default.
- W3033502122 hasConceptScore W3033502122C126838900 @default.
- W3033502122 hasConceptScore W3033502122C143409427 @default.
- W3033502122 hasConceptScore W3033502122C149550507 @default.
- W3033502122 hasConceptScore W3033502122C154945302 @default.
- W3033502122 hasConceptScore W3033502122C2778559731 @default.
- W3033502122 hasConceptScore W3033502122C2988773926 @default.
- W3033502122 hasConceptScore W3033502122C2992283565 @default.
- W3033502122 hasConceptScore W3033502122C37736160 @default.
- W3033502122 hasConceptScore W3033502122C41008148 @default.
- W3033502122 hasConceptScore W3033502122C530470458 @default.
- W3033502122 hasConceptScore W3033502122C71924100 @default.
- W3033502122 hasFunder F4320321001 @default.
- W3033502122 hasFunder F4320334860 @default.
- W3033502122 hasFunder F4320338464 @default.
- W3033502122 hasIssue "8" @default.