Matches in SemOpenAlex for { <https://semopenalex.org/work/W3033502499> ?p ?o ?g. }
- W3033502499 abstract "Abstract Accurate calculation of adsorbed shale gas content is critical for gas reserve evaluation and development. However, gas adsorption and desorption experiments are expensive and time-consuming, while physics-based models and empirical correlations are unable to accurately capture the adsorption characteristics for different shales. Langmuir adsorption is one of the most commonly used model for calculating the adsorbed gas content in shale gas reservoirs. However, most existing correlations for the Langmuir pressure and Langmuir volume in the model are oversimplified based on limited experimental data points. Thus they are not representative of key geological parameters and are far from accurate for prediction in many cases. We developed a variety of machine learning models that are multivariable controlled to quantify shale gas adsorption. The data-driven method subdivides into two procedures: data compilation and machine learning regression. Over 700 data entries, composed of reservoir temperature (T, °C), total organic carbon (TOC, wt%), vitrinite reflectance (Ro,%), Langmuir pressure, and Langmuir volume are compiled from shale gas plays mainly in USA, Canada, and China. Data have been consistently curated, then machine learning approaches, including multiple linear regression (MLR), support vector machine (SVM), random forest (RF) and artificial neural network (ANN), have been built, trained and tested by partitioning the data into 75%:25%. For SVM, RF and NN models, 1000 simulations were run and averaged for performance comparison. MLR identifies non-negligible parameters and general trends for shale gas adsorption. Nonetheless, the correlation coefficients from MLR are far from satisfactory. For Langmuir pressure, RF models fit best to the data entries and the other models follow the order of SVM > ANN > MLR. Particularly, RF models show the highest performance stability with the averaged R-squared value of 0.84 and the maximum of 0.87, indicating a very strong relationship constructed for these 213 data entries. For 485 Langmuir volume data entries, RF models also perform best while the other three regression methods are comparable. It should be noted that altering machine learning model structure and parameters could significantly affect the regression results. Robust and universal machine learning models for estimating adsorbed shale gas content with high confidence level are established, which not only provide more accurate estimation and broader parameter adaptation than physics-based and empirical models, but also circumvent the high-cost and time-consuming deficiency of experimental measurements. These machine learning models can be used to estimate adsorbed gas content for shale plays with limited experimental measurements. Moreover, they can be incorporated into reservoir simulators to improve the simulation performance." @default.
- W3033502499 created "2020-06-12" @default.
- W3033502499 creator A5011151979 @default.
- W3033502499 creator A5014588383 @default.
- W3033502499 creator A5016183535 @default.
- W3033502499 creator A5042630032 @default.
- W3033502499 creator A5047415531 @default.
- W3033502499 creator A5048361751 @default.
- W3033502499 creator A5073216396 @default.
- W3033502499 date "2020-12-01" @default.
- W3033502499 modified "2023-09-23" @default.
- W3033502499 title "Data Driven Machine Learning Models for Shale Gas Adsorption Estimation" @default.
- W3033502499 cites W1880899420 @default.
- W3033502499 cites W1983865151 @default.
- W3033502499 cites W1986113254 @default.
- W3033502499 cites W1989138337 @default.
- W3033502499 cites W2028501442 @default.
- W3033502499 cites W2067655208 @default.
- W3033502499 cites W2155482699 @default.
- W3033502499 cites W2173813363 @default.
- W3033502499 cites W2227186012 @default.
- W3033502499 cites W2238655440 @default.
- W3033502499 cites W2332520949 @default.
- W3033502499 cites W2335516955 @default.
- W3033502499 cites W2480017441 @default.
- W3033502499 cites W2492019733 @default.
- W3033502499 cites W2558577979 @default.
- W3033502499 cites W2605882470 @default.
- W3033502499 cites W2734822334 @default.
- W3033502499 cites W2766245298 @default.
- W3033502499 cites W2800231578 @default.
- W3033502499 cites W2894631034 @default.
- W3033502499 cites W2901143036 @default.
- W3033502499 cites W2909713143 @default.
- W3033502499 cites W2911964244 @default.
- W3033502499 cites W2938365718 @default.
- W3033502499 cites W2952488322 @default.
- W3033502499 cites W2969792601 @default.
- W3033502499 cites W2993559397 @default.
- W3033502499 doi "https://doi.org/10.2118/200621-ms" @default.
- W3033502499 hasPublicationYear "2020" @default.
- W3033502499 type Work @default.
- W3033502499 sameAs 3033502499 @default.
- W3033502499 citedByCount "2" @default.
- W3033502499 countsByYear W30335024992022 @default.
- W3033502499 countsByYear W30335024992023 @default.
- W3033502499 crossrefType "proceedings-article" @default.
- W3033502499 hasAuthorship W3033502499A5011151979 @default.
- W3033502499 hasAuthorship W3033502499A5014588383 @default.
- W3033502499 hasAuthorship W3033502499A5016183535 @default.
- W3033502499 hasAuthorship W3033502499A5042630032 @default.
- W3033502499 hasAuthorship W3033502499A5047415531 @default.
- W3033502499 hasAuthorship W3033502499A5048361751 @default.
- W3033502499 hasAuthorship W3033502499A5073216396 @default.
- W3033502499 hasConcept C115958267 @default.
- W3033502499 hasConcept C119857082 @default.
- W3033502499 hasConcept C121332964 @default.
- W3033502499 hasConcept C12267149 @default.
- W3033502499 hasConcept C127313418 @default.
- W3033502499 hasConcept C147789679 @default.
- W3033502499 hasConcept C150394285 @default.
- W3033502499 hasConcept C151730666 @default.
- W3033502499 hasConcept C153127940 @default.
- W3033502499 hasConcept C185592680 @default.
- W3033502499 hasConcept C20556612 @default.
- W3033502499 hasConcept C41008148 @default.
- W3033502499 hasConcept C50644808 @default.
- W3033502499 hasConcept C78762247 @default.
- W3033502499 hasConcept C97355855 @default.
- W3033502499 hasConceptScore W3033502499C115958267 @default.
- W3033502499 hasConceptScore W3033502499C119857082 @default.
- W3033502499 hasConceptScore W3033502499C121332964 @default.
- W3033502499 hasConceptScore W3033502499C12267149 @default.
- W3033502499 hasConceptScore W3033502499C127313418 @default.
- W3033502499 hasConceptScore W3033502499C147789679 @default.
- W3033502499 hasConceptScore W3033502499C150394285 @default.
- W3033502499 hasConceptScore W3033502499C151730666 @default.
- W3033502499 hasConceptScore W3033502499C153127940 @default.
- W3033502499 hasConceptScore W3033502499C185592680 @default.
- W3033502499 hasConceptScore W3033502499C20556612 @default.
- W3033502499 hasConceptScore W3033502499C41008148 @default.
- W3033502499 hasConceptScore W3033502499C50644808 @default.
- W3033502499 hasConceptScore W3033502499C78762247 @default.
- W3033502499 hasConceptScore W3033502499C97355855 @default.
- W3033502499 hasLocation W30335024991 @default.
- W3033502499 hasOpenAccess W3033502499 @default.
- W3033502499 hasPrimaryLocation W30335024991 @default.
- W3033502499 hasRelatedWork W1967588448 @default.
- W3033502499 hasRelatedWork W2352232475 @default.
- W3033502499 hasRelatedWork W2355585250 @default.
- W3033502499 hasRelatedWork W2373247097 @default.
- W3033502499 hasRelatedWork W2517222255 @default.
- W3033502499 hasRelatedWork W2761490684 @default.
- W3033502499 hasRelatedWork W2904016027 @default.
- W3033502499 hasRelatedWork W2983404321 @default.
- W3033502499 hasRelatedWork W3197726315 @default.
- W3033502499 hasRelatedWork W4281479367 @default.
- W3033502499 isParatext "false" @default.
- W3033502499 isRetracted "false" @default.
- W3033502499 magId "3033502499" @default.