Matches in SemOpenAlex for { <https://semopenalex.org/work/W3033546047> ?p ?o ?g. }
- W3033546047 endingPage "107" @default.
- W3033546047 startingPage "95" @default.
- W3033546047 abstract "One challenge in shape decomposition is to capture correct boundaries between different parts and get piecewise constant results. Based on the good edge-preserving and sparsity properties of total variation regularization, this paper introduces a novel diffusion model by minimizing weighted total-variation energy with Dirichlet boundary constraints. By the total variation diffusion model, we propose an edge-preserving shape decomposition optimization model, which can be solved effectively by augmented Lagrangian method with each subproblem having closed form solution. A number of experiments display that our method can produce segmentation results with piecewise constant parts and feature-preserving boundaries for both meshes and 3D point clouds, especially for shapes with sharp features. In addition, for mesh segmentation, our results compare favorably to those obtained by several existing techniques when evaluated on the Princeton Segmentation Benchmark. Furthermore, the quantitative errors show that the algorithm is robust numerically and the computational costs are reasonable." @default.
- W3033546047 created "2020-06-12" @default.
- W3033546047 creator A5015250780 @default.
- W3033546047 creator A5058829365 @default.
- W3033546047 date "2020-08-01" @default.
- W3033546047 modified "2023-10-10" @default.
- W3033546047 title "Total variation diffusion and its application in shape decomposition" @default.
- W3033546047 cites W1626653188 @default.
- W3033546047 cites W1952373205 @default.
- W3033546047 cites W1966076396 @default.
- W3033546047 cites W1973414297 @default.
- W3033546047 cites W1989540182 @default.
- W3033546047 cites W1996576430 @default.
- W3033546047 cites W1996724333 @default.
- W3033546047 cites W2000594266 @default.
- W3033546047 cites W2011532560 @default.
- W3033546047 cites W2020405049 @default.
- W3033546047 cites W2020461703 @default.
- W3033546047 cites W2023808821 @default.
- W3033546047 cites W2025175430 @default.
- W3033546047 cites W2029222125 @default.
- W3033546047 cites W2039939700 @default.
- W3033546047 cites W2041642242 @default.
- W3033546047 cites W2048427115 @default.
- W3033546047 cites W2056385679 @default.
- W3033546047 cites W2076374635 @default.
- W3033546047 cites W2076633596 @default.
- W3033546047 cites W2077970616 @default.
- W3033546047 cites W2091715846 @default.
- W3033546047 cites W2103559027 @default.
- W3033546047 cites W2114487471 @default.
- W3033546047 cites W2120398992 @default.
- W3033546047 cites W2132582440 @default.
- W3033546047 cites W2135073078 @default.
- W3033546047 cites W2137390095 @default.
- W3033546047 cites W2150134853 @default.
- W3033546047 cites W2157185695 @default.
- W3033546047 cites W2169008480 @default.
- W3033546047 cites W2200700078 @default.
- W3033546047 cites W2997095758 @default.
- W3033546047 doi "https://doi.org/10.1016/j.cag.2020.05.022" @default.
- W3033546047 hasPublicationYear "2020" @default.
- W3033546047 type Work @default.
- W3033546047 sameAs 3033546047 @default.
- W3033546047 citedByCount "3" @default.
- W3033546047 countsByYear W30335460472020 @default.
- W3033546047 countsByYear W30335460472022 @default.
- W3033546047 countsByYear W30335460472023 @default.
- W3033546047 crossrefType "journal-article" @default.
- W3033546047 hasAuthorship W3033546047A5015250780 @default.
- W3033546047 hasAuthorship W3033546047A5058829365 @default.
- W3033546047 hasConcept C11413529 @default.
- W3033546047 hasConcept C115961682 @default.
- W3033546047 hasConcept C126255220 @default.
- W3033546047 hasConcept C134306372 @default.
- W3033546047 hasConcept C138885662 @default.
- W3033546047 hasConcept C150452318 @default.
- W3033546047 hasConcept C154945302 @default.
- W3033546047 hasConcept C164660894 @default.
- W3033546047 hasConcept C199360897 @default.
- W3033546047 hasConcept C207282899 @default.
- W3033546047 hasConcept C2524010 @default.
- W3033546047 hasConcept C2776135515 @default.
- W3033546047 hasConcept C2776401178 @default.
- W3033546047 hasConcept C2777027219 @default.
- W3033546047 hasConcept C31487907 @default.
- W3033546047 hasConcept C33923547 @default.
- W3033546047 hasConcept C41008148 @default.
- W3033546047 hasConcept C41895202 @default.
- W3033546047 hasConcept C62354387 @default.
- W3033546047 hasConcept C89600930 @default.
- W3033546047 hasConceptScore W3033546047C11413529 @default.
- W3033546047 hasConceptScore W3033546047C115961682 @default.
- W3033546047 hasConceptScore W3033546047C126255220 @default.
- W3033546047 hasConceptScore W3033546047C134306372 @default.
- W3033546047 hasConceptScore W3033546047C138885662 @default.
- W3033546047 hasConceptScore W3033546047C150452318 @default.
- W3033546047 hasConceptScore W3033546047C154945302 @default.
- W3033546047 hasConceptScore W3033546047C164660894 @default.
- W3033546047 hasConceptScore W3033546047C199360897 @default.
- W3033546047 hasConceptScore W3033546047C207282899 @default.
- W3033546047 hasConceptScore W3033546047C2524010 @default.
- W3033546047 hasConceptScore W3033546047C2776135515 @default.
- W3033546047 hasConceptScore W3033546047C2776401178 @default.
- W3033546047 hasConceptScore W3033546047C2777027219 @default.
- W3033546047 hasConceptScore W3033546047C31487907 @default.
- W3033546047 hasConceptScore W3033546047C33923547 @default.
- W3033546047 hasConceptScore W3033546047C41008148 @default.
- W3033546047 hasConceptScore W3033546047C41895202 @default.
- W3033546047 hasConceptScore W3033546047C62354387 @default.
- W3033546047 hasConceptScore W3033546047C89600930 @default.
- W3033546047 hasFunder F4320321001 @default.
- W3033546047 hasLocation W30335460471 @default.
- W3033546047 hasOpenAccess W3033546047 @default.
- W3033546047 hasPrimaryLocation W30335460471 @default.
- W3033546047 hasRelatedWork W1565610536 @default.
- W3033546047 hasRelatedWork W1605636162 @default.
- W3033546047 hasRelatedWork W1971917627 @default.