Matches in SemOpenAlex for { <https://semopenalex.org/work/W3033557345> ?p ?o ?g. }
- W3033557345 endingPage "V376" @default.
- W3033557345 startingPage "V367" @default.
- W3033557345 abstract "Attenuation of seismic random noise is considered an important processing step to enhance the signal-to-noise ratio of seismic data. A new approach is proposed to attenuate random noise based on a deep-denoising autoencoder (DDAE). In this approach, the time-series seismic data are used as an input for the DDAE. The DDAE encodes the input seismic data to multiple levels of abstraction, and then it decodes those levels to reconstruct the seismic signal without noise. The DDAE is pretrained in a supervised way using synthetic data; following this, the pretrained model is used to denoise the field data set in an unsupervised scheme using a new customized loss function. We have assessed the proposed algorithm based on four synthetic data sets and two field examples, and we compare the results with several benchmark algorithms, such as f- x deconvolution ( f- x deconv) and the f- x singular spectrum analysis ( f- x SSA). As a result, our algorithm succeeds in attenuating the random noise in an effective manner." @default.
- W3033557345 created "2020-06-12" @default.
- W3033557345 creator A5019972279 @default.
- W3033557345 creator A5059397010 @default.
- W3033557345 date "2020-06-05" @default.
- W3033557345 modified "2023-10-14" @default.
- W3033557345 title "Deep denoising autoencoder for seismic random noise attenuation" @default.
- W3033557345 cites W1973540739 @default.
- W3033557345 cites W1996098514 @default.
- W3033557345 cites W2007938736 @default.
- W3033557345 cites W2011510652 @default.
- W3033557345 cites W2020205028 @default.
- W3033557345 cites W2021734622 @default.
- W3033557345 cites W2023503936 @default.
- W3033557345 cites W2042682930 @default.
- W3033557345 cites W2042772754 @default.
- W3033557345 cites W2076063813 @default.
- W3033557345 cites W2087995567 @default.
- W3033557345 cites W2111333160 @default.
- W3033557345 cites W2133015712 @default.
- W3033557345 cites W2141953966 @default.
- W3033557345 cites W2176950688 @default.
- W3033557345 cites W2177432006 @default.
- W3033557345 cites W2182747765 @default.
- W3033557345 cites W2403089413 @default.
- W3033557345 cites W2412205031 @default.
- W3033557345 cites W2561981131 @default.
- W3033557345 cites W2565516711 @default.
- W3033557345 cites W2702787849 @default.
- W3033557345 cites W2798828763 @default.
- W3033557345 cites W2886098498 @default.
- W3033557345 cites W2895546528 @default.
- W3033557345 cites W2896632758 @default.
- W3033557345 cites W2910355481 @default.
- W3033557345 cites W2915004230 @default.
- W3033557345 cites W2919115771 @default.
- W3033557345 cites W2963900505 @default.
- W3033557345 cites W2965510524 @default.
- W3033557345 cites W2975778935 @default.
- W3033557345 cites W3005474703 @default.
- W3033557345 doi "https://doi.org/10.1190/geo2019-0468.1" @default.
- W3033557345 hasPublicationYear "2020" @default.
- W3033557345 type Work @default.
- W3033557345 sameAs 3033557345 @default.
- W3033557345 citedByCount "153" @default.
- W3033557345 countsByYear W30335573452020 @default.
- W3033557345 countsByYear W30335573452021 @default.
- W3033557345 countsByYear W30335573452022 @default.
- W3033557345 countsByYear W30335573452023 @default.
- W3033557345 crossrefType "journal-article" @default.
- W3033557345 hasAuthorship W3033557345A5019972279 @default.
- W3033557345 hasAuthorship W3033557345A5059397010 @default.
- W3033557345 hasConcept C101738243 @default.
- W3033557345 hasConcept C11413529 @default.
- W3033557345 hasConcept C115961682 @default.
- W3033557345 hasConcept C120665830 @default.
- W3033557345 hasConcept C121332964 @default.
- W3033557345 hasConcept C127313418 @default.
- W3033557345 hasConcept C13280743 @default.
- W3033557345 hasConcept C153180895 @default.
- W3033557345 hasConcept C154945302 @default.
- W3033557345 hasConcept C160920958 @default.
- W3033557345 hasConcept C163294075 @default.
- W3033557345 hasConcept C165205528 @default.
- W3033557345 hasConcept C174576160 @default.
- W3033557345 hasConcept C184652730 @default.
- W3033557345 hasConcept C185798385 @default.
- W3033557345 hasConcept C199360897 @default.
- W3033557345 hasConcept C2779843651 @default.
- W3033557345 hasConcept C2780942248 @default.
- W3033557345 hasConcept C41008148 @default.
- W3033557345 hasConcept C50644808 @default.
- W3033557345 hasConcept C58489278 @default.
- W3033557345 hasConcept C99498987 @default.
- W3033557345 hasConceptScore W3033557345C101738243 @default.
- W3033557345 hasConceptScore W3033557345C11413529 @default.
- W3033557345 hasConceptScore W3033557345C115961682 @default.
- W3033557345 hasConceptScore W3033557345C120665830 @default.
- W3033557345 hasConceptScore W3033557345C121332964 @default.
- W3033557345 hasConceptScore W3033557345C127313418 @default.
- W3033557345 hasConceptScore W3033557345C13280743 @default.
- W3033557345 hasConceptScore W3033557345C153180895 @default.
- W3033557345 hasConceptScore W3033557345C154945302 @default.
- W3033557345 hasConceptScore W3033557345C160920958 @default.
- W3033557345 hasConceptScore W3033557345C163294075 @default.
- W3033557345 hasConceptScore W3033557345C165205528 @default.
- W3033557345 hasConceptScore W3033557345C174576160 @default.
- W3033557345 hasConceptScore W3033557345C184652730 @default.
- W3033557345 hasConceptScore W3033557345C185798385 @default.
- W3033557345 hasConceptScore W3033557345C199360897 @default.
- W3033557345 hasConceptScore W3033557345C2779843651 @default.
- W3033557345 hasConceptScore W3033557345C2780942248 @default.
- W3033557345 hasConceptScore W3033557345C41008148 @default.
- W3033557345 hasConceptScore W3033557345C50644808 @default.
- W3033557345 hasConceptScore W3033557345C58489278 @default.
- W3033557345 hasConceptScore W3033557345C99498987 @default.
- W3033557345 hasIssue "4" @default.
- W3033557345 hasLocation W30335573451 @default.