Matches in SemOpenAlex for { <https://semopenalex.org/work/W3033563497> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3033563497 endingPage "211" @default.
- W3033563497 startingPage "201" @default.
- W3033563497 abstract "Content caching is an effective technique to alleviate the burden on backhaul links and reduce the traffic in cellular networks. In converged networks, broadcasting networks can push non-real-time popular services to different types of terminals during off-peak hours, while cellular networks are deployed to meet personalized needs. However, the storage capacity of terminals are usually limited. In this context, we study on the converged networks to push and cache the popular services in the router nodes close to the terminators. In this scheme, the most popular services are transmitted by the broadcasting base station and cached in the router nodes in a distributed cache network. Then, users can access the cached services in a more energy efficient manner. Due to the limited storage capacity of the router node, we assume that the user can access the cached services within two hops. Then, we formulate the service scheduling problem as a Markov Decision Process, aiming to maximize equivalent throughput (ET). Due to the large state space involved in the distributed cache network, it is quite challenging to obtain a tractable solution by the classical optimization algorithms. To handle this problem, a deep reinforcement learning based framework is proposed to tackle this problem. The simulation results show that the proposed algorithms are very effective; and they outperform the conventional one in term of the ET, especially when the users in the network subject to Poisson point process distribution." @default.
- W3033563497 created "2020-06-12" @default.
- W3033563497 creator A5013113719 @default.
- W3033563497 creator A5021052588 @default.
- W3033563497 creator A5022624359 @default.
- W3033563497 creator A5052855960 @default.
- W3033563497 creator A5090439174 @default.
- W3033563497 date "2021-03-01" @default.
- W3033563497 modified "2023-10-18" @default.
- W3033563497 title "Distributed Caching in Converged Networks: A Deep Reinforcement Learning Approach" @default.
- W3033563497 cites W1485571217 @default.
- W3033563497 cites W2029482994 @default.
- W3033563497 cites W2051773775 @default.
- W3033563497 cites W2118251032 @default.
- W3033563497 cites W2145339207 @default.
- W3033563497 cites W2168475087 @default.
- W3033563497 cites W2425152312 @default.
- W3033563497 cites W2485041005 @default.
- W3033563497 cites W2523662665 @default.
- W3033563497 cites W2621473712 @default.
- W3033563497 cites W2624186268 @default.
- W3033563497 cites W2741787276 @default.
- W3033563497 cites W2745574548 @default.
- W3033563497 cites W2789896367 @default.
- W3033563497 cites W2889540440 @default.
- W3033563497 cites W2889895557 @default.
- W3033563497 cites W2911717124 @default.
- W3033563497 cites W2924890526 @default.
- W3033563497 cites W2949919618 @default.
- W3033563497 cites W2963334314 @default.
- W3033563497 cites W2963611429 @default.
- W3033563497 cites W2963805754 @default.
- W3033563497 cites W2964098968 @default.
- W3033563497 cites W2987711344 @default.
- W3033563497 cites W3105199623 @default.
- W3033563497 doi "https://doi.org/10.1109/tbc.2020.2996087" @default.
- W3033563497 hasPublicationYear "2021" @default.
- W3033563497 type Work @default.
- W3033563497 sameAs 3033563497 @default.
- W3033563497 citedByCount "7" @default.
- W3033563497 countsByYear W30335634972021 @default.
- W3033563497 countsByYear W30335634972022 @default.
- W3033563497 countsByYear W30335634972023 @default.
- W3033563497 crossrefType "journal-article" @default.
- W3033563497 hasAuthorship W3033563497A5013113719 @default.
- W3033563497 hasAuthorship W3033563497A5021052588 @default.
- W3033563497 hasAuthorship W3033563497A5022624359 @default.
- W3033563497 hasAuthorship W3033563497A5052855960 @default.
- W3033563497 hasAuthorship W3033563497A5090439174 @default.
- W3033563497 hasConcept C103760667 @default.
- W3033563497 hasConcept C105795698 @default.
- W3033563497 hasConcept C106189395 @default.
- W3033563497 hasConcept C115537543 @default.
- W3033563497 hasConcept C120314980 @default.
- W3033563497 hasConcept C159886148 @default.
- W3033563497 hasConcept C2775896111 @default.
- W3033563497 hasConcept C31258907 @default.
- W3033563497 hasConcept C33923547 @default.
- W3033563497 hasConcept C41008148 @default.
- W3033563497 hasConcept C68649174 @default.
- W3033563497 hasConceptScore W3033563497C103760667 @default.
- W3033563497 hasConceptScore W3033563497C105795698 @default.
- W3033563497 hasConceptScore W3033563497C106189395 @default.
- W3033563497 hasConceptScore W3033563497C115537543 @default.
- W3033563497 hasConceptScore W3033563497C120314980 @default.
- W3033563497 hasConceptScore W3033563497C159886148 @default.
- W3033563497 hasConceptScore W3033563497C2775896111 @default.
- W3033563497 hasConceptScore W3033563497C31258907 @default.
- W3033563497 hasConceptScore W3033563497C33923547 @default.
- W3033563497 hasConceptScore W3033563497C41008148 @default.
- W3033563497 hasConceptScore W3033563497C68649174 @default.
- W3033563497 hasFunder F4320321001 @default.
- W3033563497 hasFunder F4320326932 @default.
- W3033563497 hasFunder F4320327912 @default.
- W3033563497 hasIssue "1" @default.
- W3033563497 hasLocation W30335634971 @default.
- W3033563497 hasOpenAccess W3033563497 @default.
- W3033563497 hasPrimaryLocation W30335634971 @default.
- W3033563497 hasRelatedWork W1724300815 @default.
- W3033563497 hasRelatedWork W2012551222 @default.
- W3033563497 hasRelatedWork W2097644939 @default.
- W3033563497 hasRelatedWork W2097820490 @default.
- W3033563497 hasRelatedWork W2357429841 @default.
- W3033563497 hasRelatedWork W2594059527 @default.
- W3033563497 hasRelatedWork W2963149344 @default.
- W3033563497 hasRelatedWork W4200445394 @default.
- W3033563497 hasRelatedWork W4297310313 @default.
- W3033563497 hasRelatedWork W4303414366 @default.
- W3033563497 hasVolume "67" @default.
- W3033563497 isParatext "false" @default.
- W3033563497 isRetracted "false" @default.
- W3033563497 magId "3033563497" @default.
- W3033563497 workType "article" @default.