Matches in SemOpenAlex for { <https://semopenalex.org/work/W3033574992> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3033574992 endingPage "1669" @default.
- W3033574992 startingPage "1660" @default.
- W3033574992 abstract "Feature selection plays an important role in almost any data mining application especially in medical data mining to solve the problem of ‘curse of dimensionality’ and provide early diagnosis with relevant features and high accuracy. Innumerable feature selection methods have been presented in state-of-arts literature to tackle the problems of high dimensional data. Many evolutionary and swarm intelligence algorithms find solutions based on algorithm-specific control parameters. However, it is a challenging task to identify the optimal feature subset using a feature selection algorithm that is not dependent on the controlling parameters of an algorithm that is specific to a particular problem in hand. Hence, the present research work is based on the working principle of the original TLBO algorithm which does not require any algorithm-specific parameters. The proposed research work is known as Improved Teacher Learner Based Optimization (ITLBO) algorithm which aims to select the best feature subset based on Chebyshev distance formula in the evaluation of the fitness function and common control parameters viz., population size and number of generations to find the optimal feature subset for early diagnosis of chronic diseases. The proposed feature selection technique was applied to Chronic Kidney Disease (CKD) dataset and has achieved a significant feature reduction of 36% compared to the feature reduction of 25 % obtained by applying the original TLBO algorithm. The derived optimal feature subset obtained from TLBO algorithm and feature subset obtained from ITLBO algorithm is validated by evaluating the accuracy of Support Vector Machine (SVM), Convolution Neural Networks (CNN) and Gradient Boosting classification algorithms. Experimental results reveal that there is an overall improvement of classification accuracy for the three algorithms for the derived feature subset from the proposed feature selection algorithm compared to the original TLBO algorithm." @default.
- W3033574992 created "2020-06-12" @default.
- W3033574992 creator A5030649422 @default.
- W3033574992 creator A5059242098 @default.
- W3033574992 date "2020-01-01" @default.
- W3033574992 modified "2023-09-27" @default.
- W3033574992 title "Feature Selection Using Improved Teaching Learning Based Algorithm on Chronic Kidney Disease Dataset" @default.
- W3033574992 cites W1475542103 @default.
- W3033574992 cites W2064002467 @default.
- W3033574992 cites W2069116252 @default.
- W3033574992 cites W2174254273 @default.
- W3033574992 cites W2515764746 @default.
- W3033574992 cites W2528171117 @default.
- W3033574992 cites W2556109445 @default.
- W3033574992 cites W2568282335 @default.
- W3033574992 cites W257918112 @default.
- W3033574992 cites W2605807310 @default.
- W3033574992 cites W2761212090 @default.
- W3033574992 cites W2793053057 @default.
- W3033574992 cites W2795475639 @default.
- W3033574992 cites W2804798422 @default.
- W3033574992 cites W2899750879 @default.
- W3033574992 cites W2937208482 @default.
- W3033574992 cites W2944647256 @default.
- W3033574992 cites W2954102139 @default.
- W3033574992 cites W2955086442 @default.
- W3033574992 cites W4230824490 @default.
- W3033574992 doi "https://doi.org/10.1016/j.procs.2020.04.178" @default.
- W3033574992 hasPublicationYear "2020" @default.
- W3033574992 type Work @default.
- W3033574992 sameAs 3033574992 @default.
- W3033574992 citedByCount "14" @default.
- W3033574992 countsByYear W30335749922021 @default.
- W3033574992 countsByYear W30335749922022 @default.
- W3033574992 countsByYear W30335749922023 @default.
- W3033574992 crossrefType "journal-article" @default.
- W3033574992 hasAuthorship W3033574992A5030649422 @default.
- W3033574992 hasAuthorship W3033574992A5059242098 @default.
- W3033574992 hasBestOaLocation W30335749921 @default.
- W3033574992 hasConcept C11413529 @default.
- W3033574992 hasConcept C119857082 @default.
- W3033574992 hasConcept C124101348 @default.
- W3033574992 hasConcept C138885662 @default.
- W3033574992 hasConcept C144024400 @default.
- W3033574992 hasConcept C148483581 @default.
- W3033574992 hasConcept C149923435 @default.
- W3033574992 hasConcept C153180895 @default.
- W3033574992 hasConcept C154945302 @default.
- W3033574992 hasConcept C176066374 @default.
- W3033574992 hasConcept C2776401178 @default.
- W3033574992 hasConcept C2908647359 @default.
- W3033574992 hasConcept C41008148 @default.
- W3033574992 hasConcept C41895202 @default.
- W3033574992 hasConcept C70518039 @default.
- W3033574992 hasConcept C8880873 @default.
- W3033574992 hasConceptScore W3033574992C11413529 @default.
- W3033574992 hasConceptScore W3033574992C119857082 @default.
- W3033574992 hasConceptScore W3033574992C124101348 @default.
- W3033574992 hasConceptScore W3033574992C138885662 @default.
- W3033574992 hasConceptScore W3033574992C144024400 @default.
- W3033574992 hasConceptScore W3033574992C148483581 @default.
- W3033574992 hasConceptScore W3033574992C149923435 @default.
- W3033574992 hasConceptScore W3033574992C153180895 @default.
- W3033574992 hasConceptScore W3033574992C154945302 @default.
- W3033574992 hasConceptScore W3033574992C176066374 @default.
- W3033574992 hasConceptScore W3033574992C2776401178 @default.
- W3033574992 hasConceptScore W3033574992C2908647359 @default.
- W3033574992 hasConceptScore W3033574992C41008148 @default.
- W3033574992 hasConceptScore W3033574992C41895202 @default.
- W3033574992 hasConceptScore W3033574992C70518039 @default.
- W3033574992 hasConceptScore W3033574992C8880873 @default.
- W3033574992 hasLocation W30335749921 @default.
- W3033574992 hasOpenAccess W3033574992 @default.
- W3033574992 hasPrimaryLocation W30335749921 @default.
- W3033574992 hasRelatedWork W1996267020 @default.
- W3033574992 hasRelatedWork W1996625429 @default.
- W3033574992 hasRelatedWork W2108104958 @default.
- W3033574992 hasRelatedWork W2144653557 @default.
- W3033574992 hasRelatedWork W2347213675 @default.
- W3033574992 hasRelatedWork W2349378567 @default.
- W3033574992 hasRelatedWork W2350494610 @default.
- W3033574992 hasRelatedWork W2374344280 @default.
- W3033574992 hasRelatedWork W2385233088 @default.
- W3033574992 hasRelatedWork W4293525103 @default.
- W3033574992 hasVolume "171" @default.
- W3033574992 isParatext "false" @default.
- W3033574992 isRetracted "false" @default.
- W3033574992 magId "3033574992" @default.
- W3033574992 workType "article" @default.