Matches in SemOpenAlex for { <https://semopenalex.org/work/W3033576852> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3033576852 abstract "Penalized linear regression is of fundamental importance in high-dimensional statistics and has been routinely used to regress a response on a high-dimensional set of predictors. In many scientific applications, there exists external information that encodes the predictive power and sparsity structure of the predictors. In this article, we propose the Structure Adaptive Elastic-Net (SA-Enet), which provides a new framework for incorporating potentially useful side information into a penalized regression. The basic idea is to translate the external information into different penalization strengths for the regression coefficients. We particularly focus on group and covariate-dependent structures and study the risk properties of the resulting estimator. To this, we generalize the state evolution framework recently introduced for the analysis of the approximate message-passing algorithm to the SA-Enet framework. We show that the finite sample risk of the SA-Enet estimator is consistent with the theoretical risk predicted by the state evolution equation. Our theory suggests that the SA-Enet with an informative group or covariate structure can outperform the Lasso, Adaptive Lasso, Sparse Group Lasso, Feature-weighted Elastic-Net, and Graper. This evidence is further confirmed in our numerical studies. We also demonstrate the usefulness and the superiority of our method for leukemia data from molecular biology and precision medicine." @default.
- W3033576852 created "2020-06-12" @default.
- W3033576852 creator A5026688578 @default.
- W3033576852 creator A5039093027 @default.
- W3033576852 date "2020-06-03" @default.
- W3033576852 modified "2023-09-23" @default.
- W3033576852 title "Structure Adaptive Elastic-Net" @default.
- W3033576852 cites W1462541646 @default.
- W3033576852 cites W1669557330 @default.
- W3033576852 cites W1987371344 @default.
- W3033576852 cites W2020925091 @default.
- W3033576852 cites W2033484654 @default.
- W3033576852 cites W2065581062 @default.
- W3033576852 cites W2074682976 @default.
- W3033576852 cites W2082029531 @default.
- W3033576852 cites W2122825543 @default.
- W3033576852 cites W2123202508 @default.
- W3033576852 cites W2134469465 @default.
- W3033576852 cites W2135046866 @default.
- W3033576852 cites W2140514146 @default.
- W3033576852 cites W2330541013 @default.
- W3033576852 cites W2611138580 @default.
- W3033576852 cites W2808845633 @default.
- W3033576852 cites W2963206527 @default.
- W3033576852 cites W2963642566 @default.
- W3033576852 cites W2964082107 @default.
- W3033576852 cites W2979370288 @default.
- W3033576852 cites W3041599643 @default.
- W3033576852 cites W3098848552 @default.
- W3033576852 cites W3098951486 @default.
- W3033576852 doi "https://doi.org/10.48550/arxiv.2006.02041" @default.
- W3033576852 hasPublicationYear "2020" @default.
- W3033576852 type Work @default.
- W3033576852 sameAs 3033576852 @default.
- W3033576852 citedByCount "1" @default.
- W3033576852 countsByYear W30335768522020 @default.
- W3033576852 crossrefType "posted-content" @default.
- W3033576852 hasAuthorship W3033576852A5026688578 @default.
- W3033576852 hasAuthorship W3033576852A5039093027 @default.
- W3033576852 hasBestOaLocation W30335768521 @default.
- W3033576852 hasConcept C105795698 @default.
- W3033576852 hasConcept C119043178 @default.
- W3033576852 hasConcept C136764020 @default.
- W3033576852 hasConcept C138885662 @default.
- W3033576852 hasConcept C149782125 @default.
- W3033576852 hasConcept C185429906 @default.
- W3033576852 hasConcept C203868755 @default.
- W3033576852 hasConcept C2776401178 @default.
- W3033576852 hasConcept C33923547 @default.
- W3033576852 hasConcept C37616216 @default.
- W3033576852 hasConcept C41008148 @default.
- W3033576852 hasConcept C41895202 @default.
- W3033576852 hasConcept C48921125 @default.
- W3033576852 hasConcept C83546350 @default.
- W3033576852 hasConceptScore W3033576852C105795698 @default.
- W3033576852 hasConceptScore W3033576852C119043178 @default.
- W3033576852 hasConceptScore W3033576852C136764020 @default.
- W3033576852 hasConceptScore W3033576852C138885662 @default.
- W3033576852 hasConceptScore W3033576852C149782125 @default.
- W3033576852 hasConceptScore W3033576852C185429906 @default.
- W3033576852 hasConceptScore W3033576852C203868755 @default.
- W3033576852 hasConceptScore W3033576852C2776401178 @default.
- W3033576852 hasConceptScore W3033576852C33923547 @default.
- W3033576852 hasConceptScore W3033576852C37616216 @default.
- W3033576852 hasConceptScore W3033576852C41008148 @default.
- W3033576852 hasConceptScore W3033576852C41895202 @default.
- W3033576852 hasConceptScore W3033576852C48921125 @default.
- W3033576852 hasConceptScore W3033576852C83546350 @default.
- W3033576852 hasLocation W30335768521 @default.
- W3033576852 hasOpenAccess W3033576852 @default.
- W3033576852 hasPrimaryLocation W30335768521 @default.
- W3033576852 hasRelatedWork W1688366621 @default.
- W3033576852 hasRelatedWork W2125459357 @default.
- W3033576852 hasRelatedWork W2395825225 @default.
- W3033576852 hasRelatedWork W2563812114 @default.
- W3033576852 hasRelatedWork W2756088584 @default.
- W3033576852 hasRelatedWork W2911310511 @default.
- W3033576852 hasRelatedWork W2954618921 @default.
- W3033576852 hasRelatedWork W3095627713 @default.
- W3033576852 hasRelatedWork W3125359591 @default.
- W3033576852 hasRelatedWork W4300068322 @default.
- W3033576852 isParatext "false" @default.
- W3033576852 isRetracted "false" @default.
- W3033576852 magId "3033576852" @default.
- W3033576852 workType "article" @default.