Matches in SemOpenAlex for { <https://semopenalex.org/work/W3033614704> ?p ?o ?g. }
- W3033614704 endingPage "114777" @default.
- W3033614704 startingPage "114777" @default.
- W3033614704 abstract "This study investigates the influence of meteorology, land use, built environment, and traffic characteristics on near-road ultrafine particle (UFP) concentrations. To achieve this objective, minute-level UFP concentrations were measured at various locations along a major arterial road in the Greater Toronto Area (GTA) between February and May 2019. Each location was visited five times, at least once in the morning, mid-day, and afternoon. Each visit lasted for 30 min, resulting in 2.5 h of minute-level data collected at each location. Local traffic information, including vehicle class and turning movements, were processed using computer vision techniques. The number of fast-food restaurants, cafes, trees, traffic signals, and building footprint, were found to have positive impacts on the mean UFP, while distance to the closest major road was negatively associated with UFP. We employed the Extreme Gradient Boosting (XGBoost) method to develop prediction models for UFP concentrations. The Shapley additive explanation (SHAP) measures were used to capture the influence of each feature on model output. The model results demonstrated that minute-level counts of local traffic from different directions had significant impacts on near-road UFP concentrations, model performance was robust under random cross-validation as coefficients of determination (R2) ranged from 0.63 to 0.69, but it revealed weaknesses when data at specific locations were eliminated from the training dataset. This result indicates that proper cross-validation techniques should be developed to better evaluate machine learning models for air quality predictions." @default.
- W3033614704 created "2020-06-12" @default.
- W3033614704 creator A5014008526 @default.
- W3033614704 creator A5055346455 @default.
- W3033614704 creator A5058906602 @default.
- W3033614704 creator A5064276936 @default.
- W3033614704 creator A5080678245 @default.
- W3033614704 date "2020-10-01" @default.
- W3033614704 modified "2023-09-30" @default.
- W3033614704 title "A gradient boost approach for predicting near-road ultrafine particle concentrations using detailed traffic characterization" @default.
- W3033614704 cites W1969663632 @default.
- W3033614704 cites W1986452213 @default.
- W3033614704 cites W1995629692 @default.
- W3033614704 cites W2036468613 @default.
- W3033614704 cites W2041471468 @default.
- W3033614704 cites W2050536220 @default.
- W3033614704 cites W2059911813 @default.
- W3033614704 cites W2065582086 @default.
- W3033614704 cites W2069741899 @default.
- W3033614704 cites W2070393244 @default.
- W3033614704 cites W2076030606 @default.
- W3033614704 cites W2078251344 @default.
- W3033614704 cites W2137518022 @default.
- W3033614704 cites W2149160726 @default.
- W3033614704 cites W2192410920 @default.
- W3033614704 cites W2218732207 @default.
- W3033614704 cites W2282992258 @default.
- W3033614704 cites W2316634239 @default.
- W3033614704 cites W2325282659 @default.
- W3033614704 cites W2325295718 @default.
- W3033614704 cites W2434823106 @default.
- W3033614704 cites W2488914843 @default.
- W3033614704 cites W2560136348 @default.
- W3033614704 cites W2570322979 @default.
- W3033614704 cites W2573621635 @default.
- W3033614704 cites W2586130201 @default.
- W3033614704 cites W2753495494 @default.
- W3033614704 cites W2766003487 @default.
- W3033614704 cites W2788541899 @default.
- W3033614704 cites W2795710382 @default.
- W3033614704 cites W2797089804 @default.
- W3033614704 cites W2883620865 @default.
- W3033614704 cites W2886875452 @default.
- W3033614704 cites W2904150572 @default.
- W3033614704 cites W2938203099 @default.
- W3033614704 cites W2938223634 @default.
- W3033614704 cites W2954586028 @default.
- W3033614704 doi "https://doi.org/10.1016/j.envpol.2020.114777" @default.
- W3033614704 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32540592" @default.
- W3033614704 hasPublicationYear "2020" @default.
- W3033614704 type Work @default.
- W3033614704 sameAs 3033614704 @default.
- W3033614704 citedByCount "18" @default.
- W3033614704 countsByYear W30336147042021 @default.
- W3033614704 countsByYear W30336147042022 @default.
- W3033614704 countsByYear W30336147042023 @default.
- W3033614704 crossrefType "journal-article" @default.
- W3033614704 hasAuthorship W3033614704A5014008526 @default.
- W3033614704 hasAuthorship W3033614704A5055346455 @default.
- W3033614704 hasAuthorship W3033614704A5058906602 @default.
- W3033614704 hasAuthorship W3033614704A5064276936 @default.
- W3033614704 hasAuthorship W3033614704A5080678245 @default.
- W3033614704 hasConcept C119857082 @default.
- W3033614704 hasConcept C126314574 @default.
- W3033614704 hasConcept C127413603 @default.
- W3033614704 hasConcept C150032891 @default.
- W3033614704 hasConcept C153294291 @default.
- W3033614704 hasConcept C169258074 @default.
- W3033614704 hasConcept C205649164 @default.
- W3033614704 hasConcept C39432304 @default.
- W3033614704 hasConcept C41008148 @default.
- W3033614704 hasConcept C42360764 @default.
- W3033614704 hasConcept C70153297 @default.
- W3033614704 hasConceptScore W3033614704C119857082 @default.
- W3033614704 hasConceptScore W3033614704C126314574 @default.
- W3033614704 hasConceptScore W3033614704C127413603 @default.
- W3033614704 hasConceptScore W3033614704C150032891 @default.
- W3033614704 hasConceptScore W3033614704C153294291 @default.
- W3033614704 hasConceptScore W3033614704C169258074 @default.
- W3033614704 hasConceptScore W3033614704C205649164 @default.
- W3033614704 hasConceptScore W3033614704C39432304 @default.
- W3033614704 hasConceptScore W3033614704C41008148 @default.
- W3033614704 hasConceptScore W3033614704C42360764 @default.
- W3033614704 hasConceptScore W3033614704C70153297 @default.
- W3033614704 hasFunder F4320322015 @default.
- W3033614704 hasLocation W30336147041 @default.
- W3033614704 hasLocation W30336147042 @default.
- W3033614704 hasOpenAccess W3033614704 @default.
- W3033614704 hasPrimaryLocation W30336147041 @default.
- W3033614704 hasRelatedWork W2004318300 @default.
- W3033614704 hasRelatedWork W2137570441 @default.
- W3033614704 hasRelatedWork W2585739147 @default.
- W3033614704 hasRelatedWork W2605903977 @default.
- W3033614704 hasRelatedWork W2748952813 @default.
- W3033614704 hasRelatedWork W2806201687 @default.
- W3033614704 hasRelatedWork W2899084033 @default.
- W3033614704 hasRelatedWork W3035307268 @default.
- W3033614704 hasRelatedWork W4282930191 @default.