Matches in SemOpenAlex for { <https://semopenalex.org/work/W3033632671> ?p ?o ?g. }
- W3033632671 endingPage "5120" @default.
- W3033632671 startingPage "5109" @default.
- W3033632671 abstract "Abstract The binding energy of small molecules on two‐dimensional (2D) single atom catalysts influences their reaction efficiency and suitability for different applications. In this study, the binding energy on single metal atoms to N‐doped graphene defects was predicted using random forest regression based on approximately 1700 previously generated density functional theory simulations of catalytic reactions. Three different structural feature groups containing hundreds of individual structural features were created and used to characterise the active sites. This approach was found to be accurate and reliable using either fully relaxed output structures or pre‐simulation input structures, with coefficients of determination of =0.952 and =0.865, respectively. The ability to predict optimal 2D‐catalysts before undertaking expensive quantum chemical calculations is an attractive basis for future research, and could be extended to other 2D‐materials." @default.
- W3033632671 created "2020-06-12" @default.
- W3033632671 creator A5009448661 @default.
- W3033632671 creator A5017146969 @default.
- W3033632671 creator A5034381205 @default.
- W3033632671 creator A5039459434 @default.
- W3033632671 creator A5068843753 @default.
- W3033632671 creator A5081753167 @default.
- W3033632671 date "2020-09-06" @default.
- W3033632671 modified "2023-10-10" @default.
- W3033632671 title "Accurate prediction of binding energies for two‐dimensional catalytic materials using machine learning" @default.
- W3033632671 cites W1480171480 @default.
- W3033632671 cites W1531674615 @default.
- W3033632671 cites W1873395993 @default.
- W3033632671 cites W1979371521 @default.
- W3033632671 cites W2003206903 @default.
- W3033632671 cites W2022714449 @default.
- W3033632671 cites W2034097448 @default.
- W3033632671 cites W2090505627 @default.
- W3033632671 cites W2101664201 @default.
- W3033632671 cites W2134716155 @default.
- W3033632671 cites W2157955200 @default.
- W3033632671 cites W2162653998 @default.
- W3033632671 cites W2297432180 @default.
- W3033632671 cites W2314274336 @default.
- W3033632671 cites W2410576307 @default.
- W3033632671 cites W2514271442 @default.
- W3033632671 cites W2557321703 @default.
- W3033632671 cites W2624679515 @default.
- W3033632671 cites W2741906484 @default.
- W3033632671 cites W2742835787 @default.
- W3033632671 cites W2760744264 @default.
- W3033632671 cites W2780923127 @default.
- W3033632671 cites W2789575256 @default.
- W3033632671 cites W2799567665 @default.
- W3033632671 cites W2801820474 @default.
- W3033632671 cites W2803427589 @default.
- W3033632671 cites W2886163769 @default.
- W3033632671 cites W2890131401 @default.
- W3033632671 cites W2906898393 @default.
- W3033632671 cites W2911964244 @default.
- W3033632671 cites W2924477604 @default.
- W3033632671 cites W2934087699 @default.
- W3033632671 cites W2945964866 @default.
- W3033632671 cites W2960716496 @default.
- W3033632671 cites W2966125139 @default.
- W3033632671 cites W2995479014 @default.
- W3033632671 cites W2995621105 @default.
- W3033632671 cites W2997012582 @default.
- W3033632671 cites W3010262144 @default.
- W3033632671 cites W3104255923 @default.
- W3033632671 doi "https://doi.org/10.1002/cctc.202000536" @default.
- W3033632671 hasPublicationYear "2020" @default.
- W3033632671 type Work @default.
- W3033632671 sameAs 3033632671 @default.
- W3033632671 citedByCount "12" @default.
- W3033632671 countsByYear W30336326712020 @default.
- W3033632671 countsByYear W30336326712021 @default.
- W3033632671 countsByYear W30336326712022 @default.
- W3033632671 countsByYear W30336326712023 @default.
- W3033632671 crossrefType "journal-article" @default.
- W3033632671 hasAuthorship W3033632671A5009448661 @default.
- W3033632671 hasAuthorship W3033632671A5017146969 @default.
- W3033632671 hasAuthorship W3033632671A5034381205 @default.
- W3033632671 hasAuthorship W3033632671A5039459434 @default.
- W3033632671 hasAuthorship W3033632671A5068843753 @default.
- W3033632671 hasAuthorship W3033632671A5081753167 @default.
- W3033632671 hasBestOaLocation W30336326712 @default.
- W3033632671 hasConcept C121332964 @default.
- W3033632671 hasConcept C121864883 @default.
- W3033632671 hasConcept C138885662 @default.
- W3033632671 hasConcept C147597530 @default.
- W3033632671 hasConcept C149635348 @default.
- W3033632671 hasConcept C152365726 @default.
- W3033632671 hasConcept C159467904 @default.
- W3033632671 hasConcept C161790260 @default.
- W3033632671 hasConcept C171250308 @default.
- W3033632671 hasConcept C178790620 @default.
- W3033632671 hasConcept C184779094 @default.
- W3033632671 hasConcept C185592680 @default.
- W3033632671 hasConcept C186060115 @default.
- W3033632671 hasConcept C192562407 @default.
- W3033632671 hasConcept C2776401178 @default.
- W3033632671 hasConcept C2991951333 @default.
- W3033632671 hasConcept C30080830 @default.
- W3033632671 hasConcept C32909587 @default.
- W3033632671 hasConcept C41008148 @default.
- W3033632671 hasConcept C41895202 @default.
- W3033632671 hasConcept C58312451 @default.
- W3033632671 hasConcept C86803240 @default.
- W3033632671 hasConcept C93282013 @default.
- W3033632671 hasConceptScore W3033632671C121332964 @default.
- W3033632671 hasConceptScore W3033632671C121864883 @default.
- W3033632671 hasConceptScore W3033632671C138885662 @default.
- W3033632671 hasConceptScore W3033632671C147597530 @default.
- W3033632671 hasConceptScore W3033632671C149635348 @default.
- W3033632671 hasConceptScore W3033632671C152365726 @default.
- W3033632671 hasConceptScore W3033632671C159467904 @default.