Matches in SemOpenAlex for { <https://semopenalex.org/work/W3033650189> ?p ?o ?g. }
- W3033650189 endingPage "102163" @default.
- W3033650189 startingPage "102163" @default.
- W3033650189 abstract "Abstract Forest canopy height is an important indicator of forest carbon storage, productivity, and biodiversity. The present study showed the first attempt to develop a machine-learning workflow to map the spatial pattern of the forest canopy height in a mountainous region in the northeast China by coupling the recently available canopy height (Hcanopy) footprint product from ICESat-2 with the Sentinel-1 and Sentinel-2 satellite data. The ICESat-2 Hcanopy was initially validated by the high-resolution canopy height from airborne LiDAR data at different spatial scales. Performance comparisons were conducted between two machine-learning models – deep learning (DL) model and random forest (RF) model, and between the Sentinel and Landsat-8 satellites. Results showed that the ICESat-2 Hcanopy showed the highest correlation with the airborne LiDAR canopy height at a spatial scale of 250 m with a Pearson’s correlation coefficient (R) of 0.82 and a mean bias of -1.46 m, providing important evidence on the reliability of the ICESat-2 vegetation height product from the case in China’s forest. Both DL and RF models obtained satisfactory accuracy on the upscaling of ICESat-2 Hcanopy assisted by Sentinel satellite co-variables with an R-value between the observed and predicted Hcanopy equalling 0.78 and 0.68, respectively. Compared to Sentinel satellites, Landsat-8 showed relatively weaker performance in Hcanopy prediction, suggesting that the addition of the backscattering coefficients from Sentinel-1 and the red-edge related variables from Sentinel-2 could positively contribute to the prediction of forest canopy height. To our knowledge, few studies have demonstrated large-scale vegetation height mapping in a resolution ≤ 250 m based on the newly available satellites (ICESat-2, Sentinel-1 and Sentinel-2) and DL regression model, particularly in the forest areas in China. Thus, the present work provided a timely and important supplementary to the applications of these new earth observation tools." @default.
- W3033650189 created "2020-06-12" @default.
- W3033650189 creator A5004054930 @default.
- W3033650189 creator A5004939734 @default.
- W3033650189 creator A5012278873 @default.
- W3033650189 creator A5040027560 @default.
- W3033650189 creator A5064890446 @default.
- W3033650189 creator A5066081927 @default.
- W3033650189 date "2020-10-01" @default.
- W3033650189 modified "2023-10-16" @default.
- W3033650189 title "High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with Sentinel-1, Sentinel-2 and Landsat-8 data" @default.
- W3033650189 cites W1813176339 @default.
- W3033650189 cites W1942861091 @default.
- W3033650189 cites W1964789567 @default.
- W3033650189 cites W1973428156 @default.
- W3033650189 cites W1991929991 @default.
- W3033650189 cites W1994120111 @default.
- W3033650189 cites W2000102737 @default.
- W3033650189 cites W2001470990 @default.
- W3033650189 cites W2002181014 @default.
- W3033650189 cites W2010919282 @default.
- W3033650189 cites W2023899670 @default.
- W3033650189 cites W2029316659 @default.
- W3033650189 cites W2052611179 @default.
- W3033650189 cites W2094677081 @default.
- W3033650189 cites W2100969332 @default.
- W3033650189 cites W2121942758 @default.
- W3033650189 cites W2123831665 @default.
- W3033650189 cites W2137933418 @default.
- W3033650189 cites W2139086914 @default.
- W3033650189 cites W2139570512 @default.
- W3033650189 cites W2145167036 @default.
- W3033650189 cites W2193261635 @default.
- W3033650189 cites W2216058659 @default.
- W3033650189 cites W2218047931 @default.
- W3033650189 cites W2239920662 @default.
- W3033650189 cites W2266591399 @default.
- W3033650189 cites W2280788228 @default.
- W3033650189 cites W2344328155 @default.
- W3033650189 cites W2404713371 @default.
- W3033650189 cites W2412588858 @default.
- W3033650189 cites W2502515644 @default.
- W3033650189 cites W2568967893 @default.
- W3033650189 cites W2604086375 @default.
- W3033650189 cites W2604795894 @default.
- W3033650189 cites W2606100861 @default.
- W3033650189 cites W2719091425 @default.
- W3033650189 cites W2770451135 @default.
- W3033650189 cites W2806339229 @default.
- W3033650189 cites W2890915123 @default.
- W3033650189 cites W2897285410 @default.
- W3033650189 cites W2898472498 @default.
- W3033650189 cites W2901674962 @default.
- W3033650189 cites W2913323966 @default.
- W3033650189 cites W2916774546 @default.
- W3033650189 cites W2928790886 @default.
- W3033650189 cites W2931917156 @default.
- W3033650189 cites W2936184982 @default.
- W3033650189 cites W2950674916 @default.
- W3033650189 cites W2954932437 @default.
- W3033650189 cites W2955389166 @default.
- W3033650189 cites W2964227671 @default.
- W3033650189 cites W2968347155 @default.
- W3033650189 cites W2975724454 @default.
- W3033650189 cites W2986228804 @default.
- W3033650189 cites W3008439211 @default.
- W3033650189 cites W3103856189 @default.
- W3033650189 cites W3104341624 @default.
- W3033650189 cites W4240320321 @default.
- W3033650189 doi "https://doi.org/10.1016/j.jag.2020.102163" @default.
- W3033650189 hasPublicationYear "2020" @default.
- W3033650189 type Work @default.
- W3033650189 sameAs 3033650189 @default.
- W3033650189 citedByCount "63" @default.
- W3033650189 countsByYear W30336501892020 @default.
- W3033650189 countsByYear W30336501892021 @default.
- W3033650189 countsByYear W30336501892022 @default.
- W3033650189 countsByYear W30336501892023 @default.
- W3033650189 crossrefType "journal-article" @default.
- W3033650189 hasAuthorship W3033650189A5004054930 @default.
- W3033650189 hasAuthorship W3033650189A5004939734 @default.
- W3033650189 hasAuthorship W3033650189A5012278873 @default.
- W3033650189 hasAuthorship W3033650189A5040027560 @default.
- W3033650189 hasAuthorship W3033650189A5064890446 @default.
- W3033650189 hasAuthorship W3033650189A5066081927 @default.
- W3033650189 hasBestOaLocation W30336501891 @default.
- W3033650189 hasConcept C101000010 @default.
- W3033650189 hasConcept C153294291 @default.
- W3033650189 hasConcept C166957645 @default.
- W3033650189 hasConcept C205649164 @default.
- W3033650189 hasConcept C3020199158 @default.
- W3033650189 hasConcept C39432304 @default.
- W3033650189 hasConcept C39807119 @default.
- W3033650189 hasConcept C51399673 @default.
- W3033650189 hasConcept C58640448 @default.
- W3033650189 hasConcept C62649853 @default.
- W3033650189 hasConceptScore W3033650189C101000010 @default.
- W3033650189 hasConceptScore W3033650189C153294291 @default.