Matches in SemOpenAlex for { <https://semopenalex.org/work/W3033680212> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3033680212 endingPage "100338" @default.
- W3033680212 startingPage "100338" @default.
- W3033680212 abstract "Wetland area and depth of wetland in the moribund Ganges delta of India is simulated and predicted up to 2037. Normalized Difference Water Index (NDWI) map from 1987 to 2017 is used for predicting the same. Artificial Neural Network (ANN) based Cellular Automata (CA) simulation is used to predict wetland area and exponential adaptive smoothing and least square regression are used to predict wetland depth. The result shows 17–18% of wetland area may lose their existence in the upcoming two decades. Water depth of large wetlands area is likely to be reduced by 45–50% in both seasons and small fragmented marginal wetlands are going to be dried out in the next twenty years. Large wetland and wetland core area is safer than smaller and fringe wetland. Considering the socio-ecological importance policy should be taken and the result could help to define plan sustainably." @default.
- W3033680212 created "2020-06-12" @default.
- W3033680212 creator A5029245519 @default.
- W3033680212 creator A5090825061 @default.
- W3033680212 date "2020-08-01" @default.
- W3033680212 modified "2023-10-01" @default.
- W3033680212 title "Predicting wetland area and water depth of Ganges moribund deltaic parts of India" @default.
- W3033680212 cites W1963802297 @default.
- W3033680212 cites W1983702384 @default.
- W3033680212 cites W1995581599 @default.
- W3033680212 cites W1997659744 @default.
- W3033680212 cites W1998945640 @default.
- W3033680212 cites W2036159872 @default.
- W3033680212 cites W2040754173 @default.
- W3033680212 cites W2077509829 @default.
- W3033680212 cites W2101678239 @default.
- W3033680212 cites W2158789244 @default.
- W3033680212 cites W2199031689 @default.
- W3033680212 cites W2288373547 @default.
- W3033680212 cites W2321190260 @default.
- W3033680212 cites W2325919637 @default.
- W3033680212 cites W2330238266 @default.
- W3033680212 cites W2461260739 @default.
- W3033680212 cites W2555930266 @default.
- W3033680212 cites W2560167313 @default.
- W3033680212 cites W2588858606 @default.
- W3033680212 cites W2626382822 @default.
- W3033680212 cites W2726468144 @default.
- W3033680212 cites W2740674567 @default.
- W3033680212 cites W2768048451 @default.
- W3033680212 cites W2793046539 @default.
- W3033680212 cites W2801789271 @default.
- W3033680212 cites W2803399955 @default.
- W3033680212 cites W2803690745 @default.
- W3033680212 cites W2882492745 @default.
- W3033680212 cites W2890658853 @default.
- W3033680212 cites W2893387374 @default.
- W3033680212 cites W2907946949 @default.
- W3033680212 cites W2915322446 @default.
- W3033680212 cites W2921458805 @default.
- W3033680212 cites W2947560498 @default.
- W3033680212 cites W790476417 @default.
- W3033680212 doi "https://doi.org/10.1016/j.rsase.2020.100338" @default.
- W3033680212 hasPublicationYear "2020" @default.
- W3033680212 type Work @default.
- W3033680212 sameAs 3033680212 @default.
- W3033680212 citedByCount "5" @default.
- W3033680212 countsByYear W30336802122021 @default.
- W3033680212 countsByYear W30336802122022 @default.
- W3033680212 countsByYear W30336802122023 @default.
- W3033680212 crossrefType "journal-article" @default.
- W3033680212 hasAuthorship W3033680212A5029245519 @default.
- W3033680212 hasAuthorship W3033680212A5090825061 @default.
- W3033680212 hasConcept C127313418 @default.
- W3033680212 hasConcept C187320778 @default.
- W3033680212 hasConcept C18903297 @default.
- W3033680212 hasConcept C2780367215 @default.
- W3033680212 hasConcept C39432304 @default.
- W3033680212 hasConcept C524765639 @default.
- W3033680212 hasConcept C67715294 @default.
- W3033680212 hasConcept C76886044 @default.
- W3033680212 hasConcept C86803240 @default.
- W3033680212 hasConceptScore W3033680212C127313418 @default.
- W3033680212 hasConceptScore W3033680212C187320778 @default.
- W3033680212 hasConceptScore W3033680212C18903297 @default.
- W3033680212 hasConceptScore W3033680212C2780367215 @default.
- W3033680212 hasConceptScore W3033680212C39432304 @default.
- W3033680212 hasConceptScore W3033680212C524765639 @default.
- W3033680212 hasConceptScore W3033680212C67715294 @default.
- W3033680212 hasConceptScore W3033680212C76886044 @default.
- W3033680212 hasConceptScore W3033680212C86803240 @default.
- W3033680212 hasLocation W30336802121 @default.
- W3033680212 hasOpenAccess W3033680212 @default.
- W3033680212 hasPrimaryLocation W30336802121 @default.
- W3033680212 hasRelatedWork W1975206529 @default.
- W3033680212 hasRelatedWork W2016345319 @default.
- W3033680212 hasRelatedWork W2041248780 @default.
- W3033680212 hasRelatedWork W2056880494 @default.
- W3033680212 hasRelatedWork W2178696579 @default.
- W3033680212 hasRelatedWork W2527710048 @default.
- W3033680212 hasRelatedWork W3091808392 @default.
- W3033680212 hasRelatedWork W3096662627 @default.
- W3033680212 hasRelatedWork W4213076234 @default.
- W3033680212 hasRelatedWork W4252609644 @default.
- W3033680212 hasVolume "19" @default.
- W3033680212 isParatext "false" @default.
- W3033680212 isRetracted "false" @default.
- W3033680212 magId "3033680212" @default.
- W3033680212 workType "article" @default.