Matches in SemOpenAlex for { <https://semopenalex.org/work/W3033703165> ?p ?o ?g. }
- W3033703165 endingPage "692" @default.
- W3033703165 startingPage "681" @default.
- W3033703165 abstract "The idea of using wind power to charge electric vehicles (EVs) has attracted more and more attention nowadays due to the potential in significantly reducing air pollution. However, this problem is challenging on account of the uncertainty in the wind power generation and the charging demand from the EVs. Simulation-based policy improvement (SBPI) has been an important method for decision-making in stochastic dynamic programming and, in particular, for charging decisions of EVs in microgrids. However, the problem of allocating the limited computing budget for the best decision-making in online applications is less discussed. We consider this important problem in this work and make the following three major contributions. First, we show that the significant uncertainty in wind power generation forecasting could make the policy that is the outcome of an SBPI worse than the base policy. Second, we apply two existing methods to address this issue, namely, the optimal computing budget allocation (OCBA) for maximizing the probability of correct selection (OCBA_PCS) and the OCBA for minimizing the expected opportunity cost (OCBA_EOC). The asymptotic optimality is briefly reviewed. Third, we numerically compare the performance of OCBA_PCS and OCBA_EOC with the equal allocation (EA), a principle-based method, and a stochastic scenario-based method on small-scale and large-scale experiments. This work sheds light on the EV charging decision in general. Note to Practitioners-Together with the growing adoption of EVs in modern societies, there goes the challenge of how to satisfy the charging demand. Given the high uncertainty both in the wind power generation and in the charging demand, it is important to make decisions online using up-to-date estimation on the renewable power generation and the charging demand. Simulation-based policy improvement (SBPI) is shown both theoretically and practically to be useful to improve a given base policy in various applications, including this EV charging problem. However, the high uncertainty in forecasting could sometimes make the output of SBPI worse than that of the base policy. In this work, we first use numerical experiments to demonstrate the risk for such scenarios. Then, we propose to use two computing budget allocation procedures to address this issue. The asymptotic optimality of both algorithms is briefly reviewed. We demonstrate their performance on numerical experiments when there are only several EVs and when there are 100 EVs." @default.
- W3033703165 created "2020-06-12" @default.
- W3033703165 creator A5018903291 @default.
- W3033703165 creator A5044965133 @default.
- W3033703165 creator A5075845093 @default.
- W3033703165 date "2021-04-01" @default.
- W3033703165 modified "2023-10-16" @default.
- W3033703165 title "A Computing Budget Allocation Method for Minimizing EV Charging Cost Using Uncertain Wind Power" @default.
- W3033703165 cites W1536615069 @default.
- W3033703165 cites W169931978 @default.
- W3033703165 cites W1981651348 @default.
- W3033703165 cites W2015923411 @default.
- W3033703165 cites W2034099522 @default.
- W3033703165 cites W2038696819 @default.
- W3033703165 cites W2044963328 @default.
- W3033703165 cites W2046282120 @default.
- W3033703165 cites W2067867625 @default.
- W3033703165 cites W2088077079 @default.
- W3033703165 cites W2092860676 @default.
- W3033703165 cites W2093311403 @default.
- W3033703165 cites W2104449353 @default.
- W3033703165 cites W2135797872 @default.
- W3033703165 cites W2138114791 @default.
- W3033703165 cites W2138309709 @default.
- W3033703165 cites W2142858180 @default.
- W3033703165 cites W2144304907 @default.
- W3033703165 cites W2145339207 @default.
- W3033703165 cites W2145388124 @default.
- W3033703165 cites W2159107218 @default.
- W3033703165 cites W2174666931 @default.
- W3033703165 cites W2272308828 @default.
- W3033703165 cites W2318752085 @default.
- W3033703165 cites W2334782222 @default.
- W3033703165 cites W2385559241 @default.
- W3033703165 cites W2469348583 @default.
- W3033703165 cites W2497420502 @default.
- W3033703165 cites W2601522716 @default.
- W3033703165 cites W2618508146 @default.
- W3033703165 cites W2782189251 @default.
- W3033703165 cites W2782884958 @default.
- W3033703165 cites W2783399565 @default.
- W3033703165 cites W2792412969 @default.
- W3033703165 cites W2889892954 @default.
- W3033703165 cites W2895941523 @default.
- W3033703165 cites W2896319217 @default.
- W3033703165 cites W2898962569 @default.
- W3033703165 cites W2899639849 @default.
- W3033703165 cites W2923276499 @default.
- W3033703165 cites W2963653944 @default.
- W3033703165 cites W3016548437 @default.
- W3033703165 cites W3100366369 @default.
- W3033703165 cites W3100789280 @default.
- W3033703165 cites W32403112 @default.
- W3033703165 cites W1933924526 @default.
- W3033703165 doi "https://doi.org/10.1109/tase.2020.2995914" @default.
- W3033703165 hasPublicationYear "2021" @default.
- W3033703165 type Work @default.
- W3033703165 sameAs 3033703165 @default.
- W3033703165 citedByCount "8" @default.
- W3033703165 countsByYear W30337031652021 @default.
- W3033703165 countsByYear W30337031652022 @default.
- W3033703165 countsByYear W30337031652023 @default.
- W3033703165 crossrefType "journal-article" @default.
- W3033703165 hasAuthorship W3033703165A5018903291 @default.
- W3033703165 hasAuthorship W3033703165A5044965133 @default.
- W3033703165 hasAuthorship W3033703165A5075845093 @default.
- W3033703165 hasConcept C105795698 @default.
- W3033703165 hasConcept C106189395 @default.
- W3033703165 hasConcept C119599485 @default.
- W3033703165 hasConcept C126255220 @default.
- W3033703165 hasConcept C127413603 @default.
- W3033703165 hasConcept C137631369 @default.
- W3033703165 hasConcept C159886148 @default.
- W3033703165 hasConcept C18762648 @default.
- W3033703165 hasConcept C33923547 @default.
- W3033703165 hasConcept C37404715 @default.
- W3033703165 hasConcept C41008148 @default.
- W3033703165 hasConcept C42475967 @default.
- W3033703165 hasConcept C78519656 @default.
- W3033703165 hasConcept C78600449 @default.
- W3033703165 hasConceptScore W3033703165C105795698 @default.
- W3033703165 hasConceptScore W3033703165C106189395 @default.
- W3033703165 hasConceptScore W3033703165C119599485 @default.
- W3033703165 hasConceptScore W3033703165C126255220 @default.
- W3033703165 hasConceptScore W3033703165C127413603 @default.
- W3033703165 hasConceptScore W3033703165C137631369 @default.
- W3033703165 hasConceptScore W3033703165C159886148 @default.
- W3033703165 hasConceptScore W3033703165C18762648 @default.
- W3033703165 hasConceptScore W3033703165C33923547 @default.
- W3033703165 hasConceptScore W3033703165C37404715 @default.
- W3033703165 hasConceptScore W3033703165C41008148 @default.
- W3033703165 hasConceptScore W3033703165C42475967 @default.
- W3033703165 hasConceptScore W3033703165C78519656 @default.
- W3033703165 hasConceptScore W3033703165C78600449 @default.
- W3033703165 hasFunder F4320321001 @default.
- W3033703165 hasFunder F4320335777 @default.
- W3033703165 hasIssue "2" @default.
- W3033703165 hasLocation W30337031651 @default.