Matches in SemOpenAlex for { <https://semopenalex.org/work/W3033760672> ?p ?o ?g. }
- W3033760672 abstract "Tsunami deposits provide information for estimating the magnitude and flow conditions of paleotsunamis, and inverse models have potential for reconstructing hydraulic conditions of tsunamis from their deposits. The majority of the previously proposed models are based on oversimplified assumptions and possess some limitations. We present a new inverse model based on the FITTNUSS model, which incorporates nonuniform and unsteady transport of suspended sediment and turbulent mixing. The present model uses a deep neural network (DNN) for the inversion method. In this method, forward model calculations are repeated for random initial flow conditions (e.g., maximum inundation length, flow velocity, maximum flow depth, and sediment concentration) to produce artificial training data sets of depositional characteristics such as thickness and grain‐size distribution. The DNN was then trained to establish a general inverse model based on artificial data sets derived from the forward model. Tests conducted using independent artificial data sets indicated that this trained DNN can reconstruct the original flow conditions from the characteristics of the deposits. Finally, the model was applied to a data set of 2011 Tohoku‐oki tsunami deposits. The predicted results of flow conditions were verified by the observational records at Sendai plain. Jackknife resampling was applied to estimate the precision of the result. The estimated results of the flow velocity and maximum flow depth were approximately 5.4 ± 0.1 m/s and 4.1 ± 0.2 m, respectively, after the uncertainty analysis. The DNN shows promise for reconstruction of tsunami characteristics from its deposits, which would help in estimating the hydraulic conditions of paleotsunamis." @default.
- W3033760672 created "2020-06-12" @default.
- W3033760672 creator A5002053057 @default.
- W3033760672 creator A5034094001 @default.
- W3033760672 creator A5087898171 @default.
- W3033760672 date "2020-09-01" @default.
- W3033760672 modified "2023-10-02" @default.
- W3033760672 title "Estimation of Tsunami Characteristics from Deposits: Inverse Modeling Using a Deep‐Learning Neural Network" @default.
- W3033760672 cites W1776724018 @default.
- W3033760672 cites W1964219801 @default.
- W3033760672 cites W1969322008 @default.
- W3033760672 cites W1997052296 @default.
- W3033760672 cites W2003008041 @default.
- W3033760672 cites W2004729062 @default.
- W3033760672 cites W2021014045 @default.
- W3033760672 cites W2024946887 @default.
- W3033760672 cites W2038887821 @default.
- W3033760672 cites W2043968544 @default.
- W3033760672 cites W2055235187 @default.
- W3033760672 cites W2059821764 @default.
- W3033760672 cites W2071166124 @default.
- W3033760672 cites W2072259788 @default.
- W3033760672 cites W2080116154 @default.
- W3033760672 cites W2093002477 @default.
- W3033760672 cites W2099346467 @default.
- W3033760672 cites W2122740245 @default.
- W3033760672 cites W2123925869 @default.
- W3033760672 cites W2136214030 @default.
- W3033760672 cites W2145494713 @default.
- W3033760672 cites W2163805051 @default.
- W3033760672 cites W2315186495 @default.
- W3033760672 cites W2328992067 @default.
- W3033760672 cites W2331572358 @default.
- W3033760672 cites W2476829185 @default.
- W3033760672 cites W2520541055 @default.
- W3033760672 cites W2550074519 @default.
- W3033760672 cites W2592026031 @default.
- W3033760672 cites W2605102758 @default.
- W3033760672 cites W2765187446 @default.
- W3033760672 cites W2795755436 @default.
- W3033760672 cites W2946167024 @default.
- W3033760672 cites W2963201472 @default.
- W3033760672 cites W2963742597 @default.
- W3033760672 cites W3031719214 @default.
- W3033760672 doi "https://doi.org/10.1029/2020jf005583" @default.
- W3033760672 hasPublicationYear "2020" @default.
- W3033760672 type Work @default.
- W3033760672 sameAs 3033760672 @default.
- W3033760672 citedByCount "8" @default.
- W3033760672 countsByYear W30337606722021 @default.
- W3033760672 countsByYear W30337606722022 @default.
- W3033760672 countsByYear W30337606722023 @default.
- W3033760672 crossrefType "journal-article" @default.
- W3033760672 hasAuthorship W3033760672A5002053057 @default.
- W3033760672 hasAuthorship W3033760672A5034094001 @default.
- W3033760672 hasAuthorship W3033760672A5087898171 @default.
- W3033760672 hasConcept C105795698 @default.
- W3033760672 hasConcept C127313418 @default.
- W3033760672 hasConcept C134306372 @default.
- W3033760672 hasConcept C135252773 @default.
- W3033760672 hasConcept C154945302 @default.
- W3033760672 hasConcept C185429906 @default.
- W3033760672 hasConcept C207467116 @default.
- W3033760672 hasConcept C2524010 @default.
- W3033760672 hasConcept C33923547 @default.
- W3033760672 hasConcept C38349280 @default.
- W3033760672 hasConcept C41008148 @default.
- W3033760672 hasConcept C50644808 @default.
- W3033760672 hasConcept C81790035 @default.
- W3033760672 hasConceptScore W3033760672C105795698 @default.
- W3033760672 hasConceptScore W3033760672C127313418 @default.
- W3033760672 hasConceptScore W3033760672C134306372 @default.
- W3033760672 hasConceptScore W3033760672C135252773 @default.
- W3033760672 hasConceptScore W3033760672C154945302 @default.
- W3033760672 hasConceptScore W3033760672C185429906 @default.
- W3033760672 hasConceptScore W3033760672C207467116 @default.
- W3033760672 hasConceptScore W3033760672C2524010 @default.
- W3033760672 hasConceptScore W3033760672C33923547 @default.
- W3033760672 hasConceptScore W3033760672C38349280 @default.
- W3033760672 hasConceptScore W3033760672C41008148 @default.
- W3033760672 hasConceptScore W3033760672C50644808 @default.
- W3033760672 hasConceptScore W3033760672C81790035 @default.
- W3033760672 hasFunder F4320320212 @default.
- W3033760672 hasIssue "9" @default.
- W3033760672 hasLocation W30337606721 @default.
- W3033760672 hasOpenAccess W3033760672 @default.
- W3033760672 hasPrimaryLocation W30337606721 @default.
- W3033760672 hasRelatedWork W2055363771 @default.
- W3033760672 hasRelatedWork W2339811963 @default.
- W3033760672 hasRelatedWork W2385009944 @default.
- W3033760672 hasRelatedWork W2419866634 @default.
- W3033760672 hasRelatedWork W2641655 @default.
- W3033760672 hasRelatedWork W2779338154 @default.
- W3033760672 hasRelatedWork W2969549175 @default.
- W3033760672 hasRelatedWork W3011977010 @default.
- W3033760672 hasRelatedWork W3199540457 @default.
- W3033760672 hasRelatedWork W4287826188 @default.
- W3033760672 hasVolume "125" @default.
- W3033760672 isParatext "false" @default.
- W3033760672 isRetracted "false" @default.