Matches in SemOpenAlex for { <https://semopenalex.org/work/W3033763211> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W3033763211 endingPage "5774" @default.
- W3033763211 startingPage "5769" @default.
- W3033763211 abstract "Automatic disease detection systems based on Convolutional Neural Networks (CNNs) are proposed in this paper for helping the medical professionals in the detection of diseases from scan and X-ray images. CNN based classification helps decision making in a prompt manner with high precision. CNNs are a subset of deep learning which is a branch of Artificial Intelligence. The main advantage of CNNs compared to other deep learning algorithms is that they require minimal pre-processing. In the proposed disease detection system, two medical image datasets consisting of Optical Coherence Tomography (OCT) and chest X-ray images of 1-5 year-old children are considered and used as inputs. The medical images are processed and classified using CNN and various performance measuring parameters such as accuracy, loss, and training time are measured. The system is then implemented in hardware, where the testing is done using the trained models. The result shows that the validation accuracy obtained in the case of the eye dataset is around 90% whereas in the case of lung dataset it is around 63%. The proposed system aims to help medical professionals to provide a diagnosis with better accuracy thus helping in reducing infant mortality due to pneumonia and allowing finding the severity of eye disease at an earlier stage." @default.
- W3033763211 created "2020-06-12" @default.
- W3033763211 creator A5045567781 @default.
- W3033763211 creator A5076931160 @default.
- W3033763211 date "2020-06-07" @default.
- W3033763211 modified "2023-10-18" @default.
- W3033763211 title "Pneumonia and Eye Disease Detection using Convolutional Neural Networks" @default.
- W3033763211 cites W1514586132 @default.
- W3033763211 cites W1677182931 @default.
- W3033763211 cites W2033150785 @default.
- W3033763211 cites W2112796928 @default.
- W3033763211 cites W2753403518 @default.
- W3033763211 cites W2788633781 @default.
- W3033763211 cites W2801837154 @default.
- W3033763211 cites W2901954625 @default.
- W3033763211 cites W2948700543 @default.
- W3033763211 cites W2967464015 @default.
- W3033763211 cites W4238404964 @default.
- W3033763211 doi "https://doi.org/10.48084/etasr.3503" @default.
- W3033763211 hasPublicationYear "2020" @default.
- W3033763211 type Work @default.
- W3033763211 sameAs 3033763211 @default.
- W3033763211 citedByCount "7" @default.
- W3033763211 countsByYear W30337632112020 @default.
- W3033763211 countsByYear W30337632112021 @default.
- W3033763211 countsByYear W30337632112022 @default.
- W3033763211 countsByYear W30337632112023 @default.
- W3033763211 crossrefType "journal-article" @default.
- W3033763211 hasAuthorship W3033763211A5045567781 @default.
- W3033763211 hasAuthorship W3033763211A5076931160 @default.
- W3033763211 hasBestOaLocation W30337632111 @default.
- W3033763211 hasConcept C108583219 @default.
- W3033763211 hasConcept C119857082 @default.
- W3033763211 hasConcept C126838900 @default.
- W3033763211 hasConcept C153180895 @default.
- W3033763211 hasConcept C154945302 @default.
- W3033763211 hasConcept C2778818243 @default.
- W3033763211 hasConcept C31601959 @default.
- W3033763211 hasConcept C31972630 @default.
- W3033763211 hasConcept C41008148 @default.
- W3033763211 hasConcept C71924100 @default.
- W3033763211 hasConcept C81363708 @default.
- W3033763211 hasConceptScore W3033763211C108583219 @default.
- W3033763211 hasConceptScore W3033763211C119857082 @default.
- W3033763211 hasConceptScore W3033763211C126838900 @default.
- W3033763211 hasConceptScore W3033763211C153180895 @default.
- W3033763211 hasConceptScore W3033763211C154945302 @default.
- W3033763211 hasConceptScore W3033763211C2778818243 @default.
- W3033763211 hasConceptScore W3033763211C31601959 @default.
- W3033763211 hasConceptScore W3033763211C31972630 @default.
- W3033763211 hasConceptScore W3033763211C41008148 @default.
- W3033763211 hasConceptScore W3033763211C71924100 @default.
- W3033763211 hasConceptScore W3033763211C81363708 @default.
- W3033763211 hasIssue "3" @default.
- W3033763211 hasLocation W30337632111 @default.
- W3033763211 hasLocation W30337632112 @default.
- W3033763211 hasOpenAccess W3033763211 @default.
- W3033763211 hasPrimaryLocation W30337632111 @default.
- W3033763211 hasRelatedWork W3024479225 @default.
- W3033763211 hasRelatedWork W3029198973 @default.
- W3033763211 hasRelatedWork W3133861977 @default.
- W3033763211 hasRelatedWork W3167935049 @default.
- W3033763211 hasRelatedWork W3193565141 @default.
- W3033763211 hasRelatedWork W4226493464 @default.
- W3033763211 hasRelatedWork W4308993413 @default.
- W3033763211 hasRelatedWork W4312417841 @default.
- W3033763211 hasRelatedWork W4323287533 @default.
- W3033763211 hasRelatedWork W4380075502 @default.
- W3033763211 hasVolume "10" @default.
- W3033763211 isParatext "false" @default.
- W3033763211 isRetracted "false" @default.
- W3033763211 magId "3033763211" @default.
- W3033763211 workType "article" @default.