Matches in SemOpenAlex for { <https://semopenalex.org/work/W3033920229> ?p ?o ?g. }
- W3033920229 endingPage "105077" @default.
- W3033920229 startingPage "105077" @default.
- W3033920229 abstract "Ensemble Prediction System (EPS) estimates the probability distribution of atmospheric states through multiple integrations of the Numerical Weather Prediction (NWP) model/s with number of perturbed initial conditions. The choice of an ensemble size can affect the skill of the ensemble forecast. Since more ensemble members require more computational requirements, it is important to determine whether the larger ensemble size significantly improves the forecast uncertainty estimates. The EPS at National Centre for Medium Range Weather Forecasting (NEPS) is assessed for the prediction of track and intensity of Tropical Cyclones (TC) over Bay of Bengal (BoB). Medium range forecast of four tropical cyclones over BoB with three different ensemble sizes namely E11 (11 perturbed members), E22 (22 perturbed members) and E44 (44 perturbed members) are presented here. The results of the study indicate that doubling of the ensemble population reduced the mean initial position errors by 25% and increase of ensemble size by four times (E11 to E44) reduced the errors by about 38%. The ensemble mean forecast track has lower errors compared to the deterministic forecast (CNTL) at shorter lead times for all ensemble sizes. The impact of ensemble size is significant on the improvement of mean track prediction skill at longer lead times. Median of central pressure error is very close to zero for all the sizes and the forecasts are slightly underestimated compared to the observed values. The initial error in Maximum Sustained surface Wind speed (MSW) is smaller for E44 as compared to E22 and E11. Interestingly, in all lead time forecasts and all the ensemble sizes, ensemble mean MSW errors are nearly within ±5 ms−1. There is only slight improvement in the ensemble mean precipitation forecasts with the increase of ensemble size. NEPS fails to resolve the heavier rainfall distribution and has the tendency to over-predict light precipitation. Ensembles with larger size predict the TC strike area of intense storms with higher probabilities due to better consensus among member tracks fueled by improved steering flow. But few cases have shown E11 or E22 perform equally well in forecasting TC propagation and in some cases even better compared to E44. Threshold oriented verification was carried out for winds at 850 hPa considering all the cases collectively. Brier Score (BS) and its components are very close to one another for higher thresholds of winds. In general, E44 has lower BS for all different thresholds with small lead time forecasts. Smaller ensembles have slightly better reliability while large ensembles improved the resolution for lower thresholds of wind speed. Continuous ranked probability score indicate that predicted probability distribution agrees well with the analyzed cumulative distribution. Area under relative operating characteristic curve exhibits better discriminating ability of probabilistic events with larger ensemble sizes. This study clearly showed that an increase in the ensemble size has significant beneficial impact on the reduction of the percentage of outliers thereby improving the potential predictive skill of the unexpected events." @default.
- W3033920229 created "2020-06-12" @default.
- W3033920229 creator A5001161132 @default.
- W3033920229 creator A5003946047 @default.
- W3033920229 creator A5005926944 @default.
- W3033920229 creator A5054125979 @default.
- W3033920229 creator A5077659588 @default.
- W3033920229 creator A5077690208 @default.
- W3033920229 date "2020-11-01" @default.
- W3033920229 modified "2023-09-27" @default.
- W3033920229 title "Assessment of NCMRWF Global Ensemble System with differing ensemble populations for Tropical cyclone prediction" @default.
- W3033920229 cites W1518092642 @default.
- W3033920229 cites W1584326045 @default.
- W3033920229 cites W1625450412 @default.
- W3033920229 cites W1671770637 @default.
- W3033920229 cites W1840917349 @default.
- W3033920229 cites W1965406497 @default.
- W3033920229 cites W1973696552 @default.
- W3033920229 cites W1975850029 @default.
- W3033920229 cites W1979185198 @default.
- W3033920229 cites W1980332214 @default.
- W3033920229 cites W1985432209 @default.
- W3033920229 cites W1986471186 @default.
- W3033920229 cites W1987308763 @default.
- W3033920229 cites W1988016803 @default.
- W3033920229 cites W1988057684 @default.
- W3033920229 cites W1988618328 @default.
- W3033920229 cites W1989732379 @default.
- W3033920229 cites W2001673819 @default.
- W3033920229 cites W2012368128 @default.
- W3033920229 cites W2014754615 @default.
- W3033920229 cites W2024028261 @default.
- W3033920229 cites W2024174438 @default.
- W3033920229 cites W2025393118 @default.
- W3033920229 cites W2025459288 @default.
- W3033920229 cites W2025720061 @default.
- W3033920229 cites W2026961900 @default.
- W3033920229 cites W2030240465 @default.
- W3033920229 cites W2046427912 @default.
- W3033920229 cites W2047634553 @default.
- W3033920229 cites W2050882438 @default.
- W3033920229 cites W2064194493 @default.
- W3033920229 cites W2065547030 @default.
- W3033920229 cites W2066352855 @default.
- W3033920229 cites W2068146025 @default.
- W3033920229 cites W2069225437 @default.
- W3033920229 cites W2070767840 @default.
- W3033920229 cites W2073113195 @default.
- W3033920229 cites W2073241381 @default.
- W3033920229 cites W2073423137 @default.
- W3033920229 cites W2083864643 @default.
- W3033920229 cites W2089463042 @default.
- W3033920229 cites W2091098468 @default.
- W3033920229 cites W2093472741 @default.
- W3033920229 cites W2093638276 @default.
- W3033920229 cites W2097881034 @default.
- W3033920229 cites W2103220219 @default.
- W3033920229 cites W2110668259 @default.
- W3033920229 cites W2115354115 @default.
- W3033920229 cites W2119220952 @default.
- W3033920229 cites W2120349205 @default.
- W3033920229 cites W2133144322 @default.
- W3033920229 cites W2140369301 @default.
- W3033920229 cites W2156302416 @default.
- W3033920229 cites W2158523444 @default.
- W3033920229 cites W2161090919 @default.
- W3033920229 cites W2168144155 @default.
- W3033920229 cites W2173687715 @default.
- W3033920229 cites W2175066699 @default.
- W3033920229 cites W2176628900 @default.
- W3033920229 cites W2176838166 @default.
- W3033920229 cites W2178242555 @default.
- W3033920229 cites W2178985716 @default.
- W3033920229 cites W2179952483 @default.
- W3033920229 cites W2187296636 @default.
- W3033920229 cites W2464127147 @default.
- W3033920229 cites W2560425770 @default.
- W3033920229 cites W2562313906 @default.
- W3033920229 cites W2563217443 @default.
- W3033920229 cites W2590694444 @default.
- W3033920229 cites W2607168981 @default.
- W3033920229 cites W2610358890 @default.
- W3033920229 cites W2753854158 @default.
- W3033920229 cites W2773423044 @default.
- W3033920229 cites W2796020287 @default.
- W3033920229 cites W2809662634 @default.
- W3033920229 cites W2884620580 @default.
- W3033920229 cites W2899220019 @default.
- W3033920229 cites W2903205861 @default.
- W3033920229 cites W2908038877 @default.
- W3033920229 cites W2913728931 @default.
- W3033920229 cites W2959735573 @default.
- W3033920229 cites W4211257092 @default.
- W3033920229 cites W4233145871 @default.
- W3033920229 doi "https://doi.org/10.1016/j.atmosres.2020.105077" @default.
- W3033920229 hasPublicationYear "2020" @default.
- W3033920229 type Work @default.
- W3033920229 sameAs 3033920229 @default.