Matches in SemOpenAlex for { <https://semopenalex.org/work/W3033932132> ?p ?o ?g. }
- W3033932132 endingPage "e0234185" @default.
- W3033932132 startingPage "e0234185" @default.
- W3033932132 abstract "Early, ideally pre-symptomatic, recognition of common diseases (e.g., heart disease, cancer, diabetes, Alzheimer’s disease) facilitates early treatment or lifestyle modifications, such as diet and exercise. Sensitive, specific identification of diseases using blood samples would facilitate early recognition. We explored the potential of disease identification in high dimensional blood microRNA (miRNA) datasets using a powerful data reduction method: principal component analysis (PCA). Using Qlucore Omics Explorer (QOE), a dynamic, interactive visualization-guided bioinformatics program with a built-in statistical platform, we analyzed publicly available blood miRNA datasets from the Gene Expression Omnibus (GEO) maintained at the National Center for Biotechnology Information at the National Institutes of Health (NIH). The miRNA expression profiles were generated from real time PCR arrays, microarrays or next generation sequencing of biologic materials (e.g., blood, serum or blood components such as platelets). PCA identified the top three principal components that distinguished cohorts of patients with specific diseases (e.g., heart disease, stroke, hypertension, sepsis, diabetes, specific types of cancer, HIV, hemophilia, subtypes of meningitis, multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer’s disease, mild cognitive impairment, aging, and autism), from healthy subjects. Literature searches verified the functional relevance of the discriminating miRNAs. Our goal is to assemble PCA and heatmap analyses of existing and future blood miRNA datasets into a clinical reference database to facilitate the diagnosis of diseases using routine blood draws." @default.
- W3033932132 created "2020-06-12" @default.
- W3033932132 creator A5001816949 @default.
- W3033932132 creator A5018161688 @default.
- W3033932132 creator A5073382602 @default.
- W3033932132 creator A5078521665 @default.
- W3033932132 date "2020-06-05" @default.
- W3033932132 modified "2023-10-13" @default.
- W3033932132 title "Principal component analysis of blood microRNA datasets facilitates diagnosis of diverse diseases" @default.
- W3033932132 cites W1969430735 @default.
- W3033932132 cites W1969606753 @default.
- W3033932132 cites W1987829395 @default.
- W3033932132 cites W1998712202 @default.
- W3033932132 cites W2016476680 @default.
- W3033932132 cites W2019867275 @default.
- W3033932132 cites W2023687083 @default.
- W3033932132 cites W2026772883 @default.
- W3033932132 cites W2030658643 @default.
- W3033932132 cites W2032395102 @default.
- W3033932132 cites W2033310753 @default.
- W3033932132 cites W2059554242 @default.
- W3033932132 cites W2093065590 @default.
- W3033932132 cites W2094273627 @default.
- W3033932132 cites W2096203569 @default.
- W3033932132 cites W2097737056 @default.
- W3033932132 cites W2108417458 @default.
- W3033932132 cites W2109341154 @default.
- W3033932132 cites W2122866775 @default.
- W3033932132 cites W2126877661 @default.
- W3033932132 cites W2134672405 @default.
- W3033932132 cites W2135314242 @default.
- W3033932132 cites W2137459257 @default.
- W3033932132 cites W2137669678 @default.
- W3033932132 cites W2154304946 @default.
- W3033932132 cites W2163022074 @default.
- W3033932132 cites W2168856472 @default.
- W3033932132 cites W2224885092 @default.
- W3033932132 cites W2236978596 @default.
- W3033932132 cites W2282741324 @default.
- W3033932132 cites W2295124130 @default.
- W3033932132 cites W2331692487 @default.
- W3033932132 cites W2343783837 @default.
- W3033932132 cites W2349396839 @default.
- W3033932132 cites W2538846500 @default.
- W3033932132 cites W2544079919 @default.
- W3033932132 cites W2549644306 @default.
- W3033932132 cites W2550369997 @default.
- W3033932132 cites W2559923253 @default.
- W3033932132 cites W2563558056 @default.
- W3033932132 cites W2574912984 @default.
- W3033932132 cites W2581829791 @default.
- W3033932132 cites W2587485759 @default.
- W3033932132 cites W2604584884 @default.
- W3033932132 cites W2621698826 @default.
- W3033932132 cites W2728070829 @default.
- W3033932132 cites W2728356829 @default.
- W3033932132 cites W2742319412 @default.
- W3033932132 cites W2753051611 @default.
- W3033932132 cites W2753642832 @default.
- W3033932132 cites W2753982017 @default.
- W3033932132 cites W2763165087 @default.
- W3033932132 cites W2765323856 @default.
- W3033932132 cites W2765749432 @default.
- W3033932132 cites W2766046971 @default.
- W3033932132 cites W2767596689 @default.
- W3033932132 cites W2768764287 @default.
- W3033932132 cites W2770898502 @default.
- W3033932132 cites W2772227821 @default.
- W3033932132 cites W2778484459 @default.
- W3033932132 cites W2781585845 @default.
- W3033932132 cites W2782015072 @default.
- W3033932132 cites W2787898318 @default.
- W3033932132 cites W2795207192 @default.
- W3033932132 cites W2797989008 @default.
- W3033932132 cites W2803579197 @default.
- W3033932132 cites W2808268997 @default.
- W3033932132 cites W2809884193 @default.
- W3033932132 cites W2810967677 @default.
- W3033932132 cites W2814616126 @default.
- W3033932132 cites W2830747526 @default.
- W3033932132 cites W2884116396 @default.
- W3033932132 cites W2886351860 @default.
- W3033932132 cites W2888064563 @default.
- W3033932132 cites W2891806663 @default.
- W3033932132 cites W2892828639 @default.
- W3033932132 cites W2895926103 @default.
- W3033932132 cites W2896114129 @default.
- W3033932132 cites W2898106124 @default.
- W3033932132 cites W2898901851 @default.
- W3033932132 cites W2899986920 @default.
- W3033932132 cites W2901892827 @default.
- W3033932132 cites W2903466256 @default.
- W3033932132 cites W2909779866 @default.
- W3033932132 cites W2910193131 @default.
- W3033932132 cites W2911598630 @default.
- W3033932132 cites W2911986583 @default.
- W3033932132 cites W2913245279 @default.
- W3033932132 cites W2914205120 @default.