Matches in SemOpenAlex for { <https://semopenalex.org/work/W3033993412> ?p ?o ?g. }
- W3033993412 endingPage "125133" @default.
- W3033993412 startingPage "125133" @default.
- W3033993412 abstract "Abstract Rainfall and runoff are considered the main components in the hydrological cycle. Developing an accurate model to capture the dynamic connection between rainfall and runoff remains a problematic task for engineers. Several studies have been carried out to develop models to accurately predict the changes in runoff from rainfall. However, these models have limitations in terms of accuracy and complexity when large numbers of parameters are needed. Therefore, recently, with the advancement of data-driven techniques, a vast number of hydrologists have adopted models to predict changes in runoff. However, data-driven models still encounter several limitations related to hyperparameter optimization and overfitting. Hence, there is a need to improve these models to overcome these limitations. In this study, data-driven techniques such as a Multi-Layer Perceptron (MLP) neural network and Least Squares Support Vector Machine (LSSVM) are integrated with an advanced nature-inspired optimizer, namely, Harris Hawks Optimization (HHO) to model the rainfall-runoff relationship. Five different scenarios will be examined based on the autocorrelation function (ACF), cross-correlation function (CCF) and partial autocorrelation function (PACF). Finally, for comprehensive analysis, the performance of the proposed model will then be compared with integrated data-driven techniques with particle swarm optimization (PSO). The results revealed that all the augmented models with HHO outperformed other integrated models with PSO in predicting the changes in runoff. In addition, a high level of accuracy in predicting runoff values was achieved when HHO was integrated with LSSVM." @default.
- W3033993412 created "2020-06-12" @default.
- W3033993412 creator A5008004245 @default.
- W3033993412 creator A5008179908 @default.
- W3033993412 creator A5010789167 @default.
- W3033993412 creator A5024263540 @default.
- W3033993412 creator A5075190563 @default.
- W3033993412 creator A5080832103 @default.
- W3033993412 creator A5081710674 @default.
- W3033993412 date "2020-10-01" @default.
- W3033993412 modified "2023-10-14" @default.
- W3033993412 title "Rainfall-runoff modelling using improved machine learning methods: Harris hawks optimizer vs. particle swarm optimization" @default.
- W3033993412 cites W1543905881 @default.
- W3033993412 cites W1596717185 @default.
- W3033993412 cites W1982717852 @default.
- W3033993412 cites W1995341919 @default.
- W3033993412 cites W1999476400 @default.
- W3033993412 cites W2002302337 @default.
- W3033993412 cites W2002948206 @default.
- W3033993412 cites W2023275573 @default.
- W3033993412 cites W2023347862 @default.
- W3033993412 cites W2035659642 @default.
- W3033993412 cites W2035760979 @default.
- W3033993412 cites W2040905301 @default.
- W3033993412 cites W2041243118 @default.
- W3033993412 cites W2052461176 @default.
- W3033993412 cites W2057814586 @default.
- W3033993412 cites W2066874767 @default.
- W3033993412 cites W2083856799 @default.
- W3033993412 cites W2092111523 @default.
- W3033993412 cites W2104241170 @default.
- W3033993412 cites W2115766178 @default.
- W3033993412 cites W2152195021 @default.
- W3033993412 cites W2163844495 @default.
- W3033993412 cites W2179230131 @default.
- W3033993412 cites W2331446345 @default.
- W3033993412 cites W2529588304 @default.
- W3033993412 cites W2553852618 @default.
- W3033993412 cites W2725749356 @default.
- W3033993412 cites W2802050279 @default.
- W3033993412 cites W2919979744 @default.
- W3033993412 cites W2944550430 @default.
- W3033993412 cites W2962651722 @default.
- W3033993412 cites W2964253828 @default.
- W3033993412 cites W2965364867 @default.
- W3033993412 cites W2968335386 @default.
- W3033993412 cites W2969615110 @default.
- W3033993412 cites W2970790537 @default.
- W3033993412 cites W2980653736 @default.
- W3033993412 cites W2989916071 @default.
- W3033993412 cites W2992177290 @default.
- W3033993412 cites W2995993097 @default.
- W3033993412 doi "https://doi.org/10.1016/j.jhydrol.2020.125133" @default.
- W3033993412 hasPublicationYear "2020" @default.
- W3033993412 type Work @default.
- W3033993412 sameAs 3033993412 @default.
- W3033993412 citedByCount "85" @default.
- W3033993412 countsByYear W30339934122020 @default.
- W3033993412 countsByYear W30339934122021 @default.
- W3033993412 countsByYear W30339934122022 @default.
- W3033993412 countsByYear W30339934122023 @default.
- W3033993412 crossrefType "journal-article" @default.
- W3033993412 hasAuthorship W3033993412A5008004245 @default.
- W3033993412 hasAuthorship W3033993412A5008179908 @default.
- W3033993412 hasAuthorship W3033993412A5010789167 @default.
- W3033993412 hasAuthorship W3033993412A5024263540 @default.
- W3033993412 hasAuthorship W3033993412A5075190563 @default.
- W3033993412 hasAuthorship W3033993412A5080832103 @default.
- W3033993412 hasAuthorship W3033993412A5081710674 @default.
- W3033993412 hasConcept C109718341 @default.
- W3033993412 hasConcept C119857082 @default.
- W3033993412 hasConcept C127313418 @default.
- W3033993412 hasConcept C154945302 @default.
- W3033993412 hasConcept C187320778 @default.
- W3033993412 hasConcept C18903297 @default.
- W3033993412 hasConcept C39432304 @default.
- W3033993412 hasConcept C41008148 @default.
- W3033993412 hasConcept C50477045 @default.
- W3033993412 hasConcept C76886044 @default.
- W3033993412 hasConcept C85617194 @default.
- W3033993412 hasConcept C86803240 @default.
- W3033993412 hasConceptScore W3033993412C109718341 @default.
- W3033993412 hasConceptScore W3033993412C119857082 @default.
- W3033993412 hasConceptScore W3033993412C127313418 @default.
- W3033993412 hasConceptScore W3033993412C154945302 @default.
- W3033993412 hasConceptScore W3033993412C187320778 @default.
- W3033993412 hasConceptScore W3033993412C18903297 @default.
- W3033993412 hasConceptScore W3033993412C39432304 @default.
- W3033993412 hasConceptScore W3033993412C41008148 @default.
- W3033993412 hasConceptScore W3033993412C50477045 @default.
- W3033993412 hasConceptScore W3033993412C76886044 @default.
- W3033993412 hasConceptScore W3033993412C85617194 @default.
- W3033993412 hasConceptScore W3033993412C86803240 @default.
- W3033993412 hasFunder F4320321398 @default.
- W3033993412 hasLocation W30339934121 @default.
- W3033993412 hasOpenAccess W3033993412 @default.
- W3033993412 hasPrimaryLocation W30339934121 @default.
- W3033993412 hasRelatedWork W2003836542 @default.