Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034037160> ?p ?o ?g. }
- W3034037160 abstract "Image-based appearance measurements are fundamentally limited in spatial resolution by the acquisition hardware. Due to the ever-increasing resolution of displaying hardware, high-resolution representations of digital material appearance are desireable for authentic renderings. In the present paper, we demonstrate that high-resolution bidirectional texture functions (BTFs) for materials can be obtained from low-resolution measurements using single-image convolutional neural network (CNN) architectures for image super-resolution. In particular, we show that this approach works for high-dynamic-range data and produces consistent BTFs, even though it operates on an image-by-image basis. Moreover, the CNN can be trained on down-sampled measured data, therefore no high-resolution ground-truth data, which would be difficult to obtain, is necessary. We train and test our method's performance on a large-scale BTF database and evaluate against the current state-of-the-art in BTF super-resolution, finding superior performance." @default.
- W3034037160 created "2020-06-12" @default.
- W3034037160 creator A5001757502 @default.
- W3034037160 creator A5017002784 @default.
- W3034037160 creator A5037976392 @default.
- W3034037160 creator A5051179403 @default.
- W3034037160 date "2020-04-01" @default.
- W3034037160 modified "2023-09-23" @default.
- W3034037160 title "Per-Image Super-Resolution for Material BTFs" @default.
- W3034037160 cites W1791560514 @default.
- W3034037160 cites W1872952288 @default.
- W3034037160 cites W1885185971 @default.
- W3034037160 cites W1919542679 @default.
- W3034037160 cites W1949096787 @default.
- W3034037160 cites W2035677848 @default.
- W3034037160 cites W2069053895 @default.
- W3034037160 cites W2072220834 @default.
- W3034037160 cites W2079302740 @default.
- W3034037160 cites W2085573253 @default.
- W3034037160 cites W2097074225 @default.
- W3034037160 cites W2110436368 @default.
- W3034037160 cites W2125389028 @default.
- W3034037160 cites W2146200771 @default.
- W3034037160 cites W2150081556 @default.
- W3034037160 cites W2163935418 @default.
- W3034037160 cites W2295438126 @default.
- W3034037160 cites W2476548250 @default.
- W3034037160 cites W2497667527 @default.
- W3034037160 cites W2527019762 @default.
- W3034037160 cites W2607041014 @default.
- W3034037160 cites W2780544323 @default.
- W3034037160 cites W2780978202 @default.
- W3034037160 cites W2791844328 @default.
- W3034037160 cites W2885876173 @default.
- W3034037160 cites W2887695188 @default.
- W3034037160 cites W2891158090 @default.
- W3034037160 cites W2895240252 @default.
- W3034037160 cites W2913214881 @default.
- W3034037160 cites W2943960148 @default.
- W3034037160 cites W2949117887 @default.
- W3034037160 cites W2962843502 @default.
- W3034037160 cites W2963037581 @default.
- W3034037160 cites W2963182372 @default.
- W3034037160 cites W2963470893 @default.
- W3034037160 cites W2964042923 @default.
- W3034037160 cites W2964101377 @default.
- W3034037160 cites W2964121744 @default.
- W3034037160 cites W2983597143 @default.
- W3034037160 cites W3013529009 @default.
- W3034037160 cites W54257720 @default.
- W3034037160 cites W935139217 @default.
- W3034037160 doi "https://doi.org/10.1109/iccp48838.2020.9105256" @default.
- W3034037160 hasPublicationYear "2020" @default.
- W3034037160 type Work @default.
- W3034037160 sameAs 3034037160 @default.
- W3034037160 citedByCount "0" @default.
- W3034037160 crossrefType "proceedings-article" @default.
- W3034037160 hasAuthorship W3034037160A5001757502 @default.
- W3034037160 hasAuthorship W3034037160A5017002784 @default.
- W3034037160 hasAuthorship W3034037160A5037976392 @default.
- W3034037160 hasAuthorship W3034037160A5051179403 @default.
- W3034037160 hasConcept C115961682 @default.
- W3034037160 hasConcept C127313418 @default.
- W3034037160 hasConcept C138268822 @default.
- W3034037160 hasConcept C141239990 @default.
- W3034037160 hasConcept C146849305 @default.
- W3034037160 hasConcept C153180895 @default.
- W3034037160 hasConcept C154945302 @default.
- W3034037160 hasConcept C159985019 @default.
- W3034037160 hasConcept C192562407 @default.
- W3034037160 hasConcept C204323151 @default.
- W3034037160 hasConcept C205372480 @default.
- W3034037160 hasConcept C3019883945 @default.
- W3034037160 hasConcept C3020199158 @default.
- W3034037160 hasConcept C31972630 @default.
- W3034037160 hasConcept C41008148 @default.
- W3034037160 hasConcept C42781572 @default.
- W3034037160 hasConcept C62649853 @default.
- W3034037160 hasConcept C81363708 @default.
- W3034037160 hasConcept C9417928 @default.
- W3034037160 hasConceptScore W3034037160C115961682 @default.
- W3034037160 hasConceptScore W3034037160C127313418 @default.
- W3034037160 hasConceptScore W3034037160C138268822 @default.
- W3034037160 hasConceptScore W3034037160C141239990 @default.
- W3034037160 hasConceptScore W3034037160C146849305 @default.
- W3034037160 hasConceptScore W3034037160C153180895 @default.
- W3034037160 hasConceptScore W3034037160C154945302 @default.
- W3034037160 hasConceptScore W3034037160C159985019 @default.
- W3034037160 hasConceptScore W3034037160C192562407 @default.
- W3034037160 hasConceptScore W3034037160C204323151 @default.
- W3034037160 hasConceptScore W3034037160C205372480 @default.
- W3034037160 hasConceptScore W3034037160C3019883945 @default.
- W3034037160 hasConceptScore W3034037160C3020199158 @default.
- W3034037160 hasConceptScore W3034037160C31972630 @default.
- W3034037160 hasConceptScore W3034037160C41008148 @default.
- W3034037160 hasConceptScore W3034037160C42781572 @default.
- W3034037160 hasConceptScore W3034037160C62649853 @default.
- W3034037160 hasConceptScore W3034037160C81363708 @default.
- W3034037160 hasConceptScore W3034037160C9417928 @default.
- W3034037160 hasLocation W30340371601 @default.