Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034062778> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3034062778 abstract "This thesis is concerned with fault-tolerant quantum information processing using quantum error-correcting codes. It contains two major pieces of work. The first is a study of coherent noise in the context of stabilizer error-correcting codes. The second is a proposed scheme for a universal set of fault-tolerant logical gates in a particular code family built out of the 3D toric code. Chapter 1 provides an introduction to quantum computation and fault tolerance. Many basic concepts in error-correcting codes are defined. Special attention is paid to the set of code properties that are most likely to determine how easily a given fault-tolerant scheme might be implemented on a physical device. These include the fault-tolerant noise threshold and the overhead. In Chapters 2 and 3 we study the effectiveness of quantum error correction against coherent noise. Coherent errors (for example, unitary noise) can interfere constructively, so that in some cases the average infidelity of a quantum circuit subjected to coherent errors may increase quadratically with the circuit size; in contrast, when errors are incoherent (for example, depolarizing noise), the average infidelity increases at worst linearly with circuit size. We consider the performance of quantum stabilizer codes against a noise model in which a unitary rotation is applied to each qubit, where the axes and angles of rotation are nearly the same for all qubits. In Chapter 2 we introduce coherent noise and incoherent noise and a number of methods that are useful for the study of coherent noise. We study the repetition code as a basic example, and we also study a correlated noise model. In Chapter 3 we show that for the toric code subject to such independent coherent noise, and for minimal-weight decoding, the logical channel after error correction becomes increasingly incoherent as the length of the code increases, provided the noise strength decays inversely with the code distance. A similar conclusion holds for weakly correlated coherent noise. Our methods can also be used for analyzing the performance of other codes and fault-tolerant protocols against coherent noise. However, our result does not show that the coherence of the logical channel is suppressed in the more physically relevant case where the noise strength is held constant as the code block grows, and we recount the difficulties that prevented us from extending the result to that case. Nevertheless our work supports the idea that fault-tolerant quantum computing schemes will work effectively against coherent noise, providing encouraging news for quantum hardware builders who worry about the damaging effects of control errors and coherent interactions with the environment. Chapter 4 is connected to another aspect of fault tolerance, fault-tolerant logical gates. The toric code is a promising candidate for fault-tolerant quantum computation because of its high threshold and low-weight stabilizers. A universal gate set in the toric code generally requires magic state distillation, which can incur a significant qubit overhead. In this work we construct an error-correcting code in three dimensions based on the toric code that features a fault-tolerant T gate with no magic state distillation required. We further describe a subsystem version of our code which supports a universal set of fault-tolerant gates. This code can be converted into the stabilizer version using gauge-fixing. We also argue that our code can be converted to a (2+1)-D protocol, where a 2D lattice undergoes a measurement-based protocol over time. In this way, a fault-tolerant logical T gate can be realized in a 2D toric code structure." @default.
- W3034062778 created "2020-06-12" @default.
- W3034062778 creator A5026054597 @default.
- W3034062778 date "2020-01-01" @default.
- W3034062778 modified "2023-09-24" @default.
- W3034062778 title "Aspects of Fault-Tolerant Quantum Computation" @default.
- W3034062778 doi "https://doi.org/10.7907/q5ev-rm81." @default.
- W3034062778 hasPublicationYear "2020" @default.
- W3034062778 type Work @default.
- W3034062778 sameAs 3034062778 @default.
- W3034062778 citedByCount "1" @default.
- W3034062778 countsByYear W30340627782021 @default.
- W3034062778 crossrefType "dissertation" @default.
- W3034062778 hasAuthorship W3034062778A5026054597 @default.
- W3034062778 hasConcept C103088060 @default.
- W3034062778 hasConcept C111996192 @default.
- W3034062778 hasConcept C113775141 @default.
- W3034062778 hasConcept C11413529 @default.
- W3034062778 hasConcept C115961682 @default.
- W3034062778 hasConcept C121332964 @default.
- W3034062778 hasConcept C124148022 @default.
- W3034062778 hasConcept C127413603 @default.
- W3034062778 hasConcept C154945302 @default.
- W3034062778 hasConcept C203087015 @default.
- W3034062778 hasConcept C24326235 @default.
- W3034062778 hasConcept C41008148 @default.
- W3034062778 hasConcept C51003876 @default.
- W3034062778 hasConcept C58053490 @default.
- W3034062778 hasConcept C62520636 @default.
- W3034062778 hasConcept C69497775 @default.
- W3034062778 hasConcept C80444323 @default.
- W3034062778 hasConcept C84114770 @default.
- W3034062778 hasConcept C99498987 @default.
- W3034062778 hasConceptScore W3034062778C103088060 @default.
- W3034062778 hasConceptScore W3034062778C111996192 @default.
- W3034062778 hasConceptScore W3034062778C113775141 @default.
- W3034062778 hasConceptScore W3034062778C11413529 @default.
- W3034062778 hasConceptScore W3034062778C115961682 @default.
- W3034062778 hasConceptScore W3034062778C121332964 @default.
- W3034062778 hasConceptScore W3034062778C124148022 @default.
- W3034062778 hasConceptScore W3034062778C127413603 @default.
- W3034062778 hasConceptScore W3034062778C154945302 @default.
- W3034062778 hasConceptScore W3034062778C203087015 @default.
- W3034062778 hasConceptScore W3034062778C24326235 @default.
- W3034062778 hasConceptScore W3034062778C41008148 @default.
- W3034062778 hasConceptScore W3034062778C51003876 @default.
- W3034062778 hasConceptScore W3034062778C58053490 @default.
- W3034062778 hasConceptScore W3034062778C62520636 @default.
- W3034062778 hasConceptScore W3034062778C69497775 @default.
- W3034062778 hasConceptScore W3034062778C80444323 @default.
- W3034062778 hasConceptScore W3034062778C84114770 @default.
- W3034062778 hasConceptScore W3034062778C99498987 @default.
- W3034062778 hasLocation W30340627781 @default.
- W3034062778 hasOpenAccess W3034062778 @default.
- W3034062778 hasPrimaryLocation W30340627781 @default.
- W3034062778 hasRelatedWork W1540106918 @default.
- W3034062778 hasRelatedWork W1541212592 @default.
- W3034062778 hasRelatedWork W1638008711 @default.
- W3034062778 hasRelatedWork W1675244148 @default.
- W3034062778 hasRelatedWork W1959392488 @default.
- W3034062778 hasRelatedWork W2000415061 @default.
- W3034062778 hasRelatedWork W2049546811 @default.
- W3034062778 hasRelatedWork W2052169397 @default.
- W3034062778 hasRelatedWork W2092397050 @default.
- W3034062778 hasRelatedWork W2762123617 @default.
- W3034062778 hasRelatedWork W2917936957 @default.
- W3034062778 hasRelatedWork W2990607893 @default.
- W3034062778 hasRelatedWork W2996546932 @default.
- W3034062778 hasRelatedWork W3013823205 @default.
- W3034062778 hasRelatedWork W3089424125 @default.
- W3034062778 hasRelatedWork W3105576962 @default.
- W3034062778 hasRelatedWork W3105621179 @default.
- W3034062778 hasRelatedWork W3134467527 @default.
- W3034062778 hasRelatedWork W3163495057 @default.
- W3034062778 hasRelatedWork W643917665 @default.
- W3034062778 isParatext "false" @default.
- W3034062778 isRetracted "false" @default.
- W3034062778 magId "3034062778" @default.
- W3034062778 workType "dissertation" @default.