Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034124771> ?p ?o ?g. }
- W3034124771 endingPage "104618" @default.
- W3034124771 startingPage "104603" @default.
- W3034124771 abstract "In recent years, researches are concentrating on the effectiveness of Transfer Learning (TL) and Ensemble Learning (EL) techniques in cervical histopathology image analysis. However, there have been very few investigations that have described the stages of differentiation of cervical histopathological images. Therefore, in this article, we propose an Ensembled Transfer Learning (ETL) framework to classify well, moderate and poorly differentiated cervical histopathological images. First of all, we have developed Inception-V3, Xception, VGG-16, and Resnet-50 based TL structures. Then, to enhance the classification performance, a weighted voting based EL strategy is introduced. After that, to evaluate the proposed algorithm, a dataset consisting of 307 images, stained by three immunohistochemistry methods (AQP, HIF, and VEGF) is considered. In the experiment, we obtain the highest overall accuracy of 97.03% and 98.61% on AQP staining images and poor differentiation of VEGF staining images, individually. Finally, an additional experiment for classifying the benign cells from the malignant ones is carried out on the Herlev dataset and obtains an overall accuracy of 98.37%." @default.
- W3034124771 created "2020-06-12" @default.
- W3034124771 creator A5003777802 @default.
- W3034124771 creator A5010097239 @default.
- W3034124771 creator A5021827481 @default.
- W3034124771 creator A5024292688 @default.
- W3034124771 creator A5041116399 @default.
- W3034124771 creator A5041666851 @default.
- W3034124771 creator A5064208724 @default.
- W3034124771 creator A5075100287 @default.
- W3034124771 creator A5079369842 @default.
- W3034124771 creator A5091500087 @default.
- W3034124771 date "2020-01-01" @default.
- W3034124771 modified "2023-10-15" @default.
- W3034124771 title "An Application of Transfer Learning and Ensemble Learning Techniques for Cervical Histopathology Image Classification" @default.
- W3034124771 cites W1997126996 @default.
- W3034124771 cites W1998234672 @default.
- W3034124771 cites W2020830322 @default.
- W3034124771 cites W2021028811 @default.
- W3034124771 cites W2034051937 @default.
- W3034124771 cites W2042650211 @default.
- W3034124771 cites W2068925628 @default.
- W3034124771 cites W2074279343 @default.
- W3034124771 cites W2079711495 @default.
- W3034124771 cites W2081399576 @default.
- W3034124771 cites W2092101902 @default.
- W3034124771 cites W2093906223 @default.
- W3034124771 cites W2100344125 @default.
- W3034124771 cites W2108598243 @default.
- W3034124771 cites W2131493482 @default.
- W3034124771 cites W2154253360 @default.
- W3034124771 cites W2158514621 @default.
- W3034124771 cites W2194775991 @default.
- W3034124771 cites W2396128756 @default.
- W3034124771 cites W2460401654 @default.
- W3034124771 cites W2516055167 @default.
- W3034124771 cites W2517639096 @default.
- W3034124771 cites W2562957762 @default.
- W3034124771 cites W2563674783 @default.
- W3034124771 cites W2567212392 @default.
- W3034124771 cites W2579348194 @default.
- W3034124771 cites W2621367454 @default.
- W3034124771 cites W2638507138 @default.
- W3034124771 cites W2725194261 @default.
- W3034124771 cites W2765495938 @default.
- W3034124771 cites W2767040509 @default.
- W3034124771 cites W2811383556 @default.
- W3034124771 cites W2955181859 @default.
- W3034124771 cites W2955280797 @default.
- W3034124771 cites W2955446685 @default.
- W3034124771 cites W2955723523 @default.
- W3034124771 cites W2967412240 @default.
- W3034124771 cites W2997021327 @default.
- W3034124771 cites W3003607530 @default.
- W3034124771 cites W3014001067 @default.
- W3034124771 cites W3102737931 @default.
- W3034124771 cites W4239819457 @default.
- W3034124771 doi "https://doi.org/10.1109/access.2020.2999816" @default.
- W3034124771 hasPublicationYear "2020" @default.
- W3034124771 type Work @default.
- W3034124771 sameAs 3034124771 @default.
- W3034124771 citedByCount "74" @default.
- W3034124771 countsByYear W30341247712020 @default.
- W3034124771 countsByYear W30341247712021 @default.
- W3034124771 countsByYear W30341247712022 @default.
- W3034124771 countsByYear W30341247712023 @default.
- W3034124771 crossrefType "journal-article" @default.
- W3034124771 hasAuthorship W3034124771A5003777802 @default.
- W3034124771 hasAuthorship W3034124771A5010097239 @default.
- W3034124771 hasAuthorship W3034124771A5021827481 @default.
- W3034124771 hasAuthorship W3034124771A5024292688 @default.
- W3034124771 hasAuthorship W3034124771A5041116399 @default.
- W3034124771 hasAuthorship W3034124771A5041666851 @default.
- W3034124771 hasAuthorship W3034124771A5064208724 @default.
- W3034124771 hasAuthorship W3034124771A5075100287 @default.
- W3034124771 hasAuthorship W3034124771A5079369842 @default.
- W3034124771 hasAuthorship W3034124771A5091500087 @default.
- W3034124771 hasBestOaLocation W30341247711 @default.
- W3034124771 hasConcept C115961682 @default.
- W3034124771 hasConcept C142724271 @default.
- W3034124771 hasConcept C150899416 @default.
- W3034124771 hasConcept C153180895 @default.
- W3034124771 hasConcept C154945302 @default.
- W3034124771 hasConcept C41008148 @default.
- W3034124771 hasConcept C45942800 @default.
- W3034124771 hasConcept C544855455 @default.
- W3034124771 hasConcept C71924100 @default.
- W3034124771 hasConcept C75294576 @default.
- W3034124771 hasConceptScore W3034124771C115961682 @default.
- W3034124771 hasConceptScore W3034124771C142724271 @default.
- W3034124771 hasConceptScore W3034124771C150899416 @default.
- W3034124771 hasConceptScore W3034124771C153180895 @default.
- W3034124771 hasConceptScore W3034124771C154945302 @default.
- W3034124771 hasConceptScore W3034124771C41008148 @default.
- W3034124771 hasConceptScore W3034124771C45942800 @default.
- W3034124771 hasConceptScore W3034124771C544855455 @default.
- W3034124771 hasConceptScore W3034124771C71924100 @default.
- W3034124771 hasConceptScore W3034124771C75294576 @default.