Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034134418> ?p ?o ?g. }
- W3034134418 endingPage "284" @default.
- W3034134418 startingPage "284" @default.
- W3034134418 abstract "We performed a series of numerical experiments to quantify the sensitivity of the predictions for weak lensing statistics obtained in raytracing DM-only simulations, to two hyper-parameters that influence the accuracy as well as the computational cost of the predictions: the thickness of the lens planes used to build past light-cones and the mass resolution of the underlying DM simulation. The statistics considered are the power spectrum and a series of non-Gaussian observables, including the one-point probability density function, lensing peaks, and Minkowski functionals. Counter-intuitively, we find that using thin lens planes ($< 60~h^{-1}$Mpc on a $240~h^{-1}$Mpc simulation box) suppresses the power spectrum over a broad range of scales beyond what would be acceptable for an LSST-type survey. A mass resolution of $7.2times 10^{11}~h^{-1},M_{odot}$ per DM particle (or 256$^3$ particles in a ($240~h^{-1}$Mpc)$^3$ box) is sufficient to extract information using the power spectrum and non-Gaussian statistics from weak lensing data at angular scales down to 1 arcmin with LSST-like levels of shape noise." @default.
- W3034134418 created "2020-06-12" @default.
- W3034134418 creator A5017957723 @default.
- W3034134418 creator A5042578394 @default.
- W3034134418 creator A5085339462 @default.
- W3034134418 date "2020-06-01" @default.
- W3034134418 modified "2023-09-28" @default.
- W3034134418 title "Optimizing Simulation Parameters for Weak Lensing Analyses Involving Non-Gaussian Observables" @default.
- W3034134418 cites W1653510139 @default.
- W3034134418 cites W1799095182 @default.
- W3034134418 cites W1824193623 @default.
- W3034134418 cites W1944901286 @default.
- W3034134418 cites W1967132752 @default.
- W3034134418 cites W1974931032 @default.
- W3034134418 cites W2006524295 @default.
- W3034134418 cites W2010341663 @default.
- W3034134418 cites W2030313587 @default.
- W3034134418 cites W2039708204 @default.
- W3034134418 cites W2045456075 @default.
- W3034134418 cites W2050130030 @default.
- W3034134418 cites W2095661530 @default.
- W3034134418 cites W2104977243 @default.
- W3034134418 cites W2107073439 @default.
- W3034134418 cites W2117225604 @default.
- W3034134418 cites W2117363750 @default.
- W3034134418 cites W2121283769 @default.
- W3034134418 cites W2128250084 @default.
- W3034134418 cites W2141449818 @default.
- W3034134418 cites W2144772031 @default.
- W3034134418 cites W2155468079 @default.
- W3034134418 cites W2201462649 @default.
- W3034134418 cites W2263240324 @default.
- W3034134418 cites W2291841595 @default.
- W3034134418 cites W2302117322 @default.
- W3034134418 cites W2409969625 @default.
- W3034134418 cites W2522079654 @default.
- W3034134418 cites W2550502624 @default.
- W3034134418 cites W2560260657 @default.
- W3034134418 cites W2738677174 @default.
- W3034134418 cites W2758289058 @default.
- W3034134418 cites W2812382880 @default.
- W3034134418 cites W2890064342 @default.
- W3034134418 cites W2892625271 @default.
- W3034134418 cites W2900466252 @default.
- W3034134418 cites W3004014367 @default.
- W3034134418 cites W3098221464 @default.
- W3034134418 cites W3098724574 @default.
- W3034134418 cites W3100446834 @default.
- W3034134418 cites W3101239211 @default.
- W3034134418 cites W3101997776 @default.
- W3034134418 cites W3102082949 @default.
- W3034134418 cites W3103711115 @default.
- W3034134418 cites W3104032432 @default.
- W3034134418 cites W3104302101 @default.
- W3034134418 cites W3105347508 @default.
- W3034134418 cites W3105494006 @default.
- W3034134418 cites W3105753488 @default.
- W3034134418 cites W3106099555 @default.
- W3034134418 cites W4292875581 @default.
- W3034134418 cites W4298854946 @default.
- W3034134418 doi "https://doi.org/10.3847/1538-3881/ab8f8c" @default.
- W3034134418 hasPublicationYear "2020" @default.
- W3034134418 type Work @default.
- W3034134418 sameAs 3034134418 @default.
- W3034134418 citedByCount "7" @default.
- W3034134418 countsByYear W30341344182020 @default.
- W3034134418 countsByYear W30341344182021 @default.
- W3034134418 countsByYear W30341344182023 @default.
- W3034134418 crossrefType "journal-article" @default.
- W3034134418 hasAuthorship W3034134418A5017957723 @default.
- W3034134418 hasAuthorship W3034134418A5042578394 @default.
- W3034134418 hasAuthorship W3034134418A5085339462 @default.
- W3034134418 hasBestOaLocation W30341344181 @default.
- W3034134418 hasConcept C105795698 @default.
- W3034134418 hasConcept C115961682 @default.
- W3034134418 hasConcept C120665830 @default.
- W3034134418 hasConcept C121332964 @default.
- W3034134418 hasConcept C121864883 @default.
- W3034134418 hasConcept C154945302 @default.
- W3034134418 hasConcept C159985019 @default.
- W3034134418 hasConcept C163716315 @default.
- W3034134418 hasConcept C168110828 @default.
- W3034134418 hasConcept C190670322 @default.
- W3034134418 hasConcept C192562407 @default.
- W3034134418 hasConcept C197055811 @default.
- W3034134418 hasConcept C204323151 @default.
- W3034134418 hasConcept C32848918 @default.
- W3034134418 hasConcept C33024259 @default.
- W3034134418 hasConcept C33923547 @default.
- W3034134418 hasConcept C41008148 @default.
- W3034134418 hasConcept C44870925 @default.
- W3034134418 hasConcept C62520636 @default.
- W3034134418 hasConcept C69179731 @default.
- W3034134418 hasConcept C79464548 @default.
- W3034134418 hasConcept C98444146 @default.
- W3034134418 hasConcept C99498987 @default.
- W3034134418 hasConceptScore W3034134418C105795698 @default.
- W3034134418 hasConceptScore W3034134418C115961682 @default.