Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034144495> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3034144495 endingPage "101899" @default.
- W3034144495 startingPage "101899" @default.
- W3034144495 abstract "In this paper, we embed two types of attention modules in the dilated fully convolutional network (FCN) to solve biomedical image segmentation tasks efficiently and accurately. Different from previous work on image segmentation through multiscale feature fusion, we propose the fully convolutional attention network (FCANet) to aggregate contextual information at long-range and short-range distances. Specifically, we add two types of attention modules, the spatial attention module and the channel attention module, to the Res2Net network, which has a dilated strategy. The features of each location are aggregated through the spatial attention module, so that similar features promote each other in space size. At the same time, the channel attention module treats each channel of the feature map as a feature detector and emphasizes the channel dependency between any two channel maps. Finally, we weight the sum of the output features of the two types of attention modules to retain the feature information of the long-range and short-range distances, to further improve the representation of the features and make the biomedical image segmentation more accurate. In particular, we verify that the proposed attention module can seamlessly connect to any end-to-end network with minimal overhead. We perform comprehensive experiments on three public biomedical image segmentation datasets, i.e., the Chest X-ray collection, the Kaggle 2018 data science bowl and the Herlev dataset. The experimental results show that FCANet can improve the segmentation effect of biomedical images. The source code models are available at https://github.com/luhongchun/FCANet" @default.
- W3034144495 created "2020-06-12" @default.
- W3034144495 creator A5024180326 @default.
- W3034144495 creator A5043916192 @default.
- W3034144495 creator A5057774088 @default.
- W3034144495 creator A5075221279 @default.
- W3034144495 creator A5084962743 @default.
- W3034144495 date "2020-07-01" @default.
- W3034144495 modified "2023-09-30" @default.
- W3034144495 title "Fully convolutional attention network for biomedical image segmentation" @default.
- W3034144495 cites W2152772232 @default.
- W3034144495 cites W2412782625 @default.
- W3034144495 cites W2928165649 @default.
- W3034144495 cites W2963881378 @default.
- W3034144495 cites W2972093541 @default.
- W3034144495 cites W3102737931 @default.
- W3034144495 cites W3105311500 @default.
- W3034144495 doi "https://doi.org/10.1016/j.artmed.2020.101899" @default.
- W3034144495 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32828447" @default.
- W3034144495 hasPublicationYear "2020" @default.
- W3034144495 type Work @default.
- W3034144495 sameAs 3034144495 @default.
- W3034144495 citedByCount "42" @default.
- W3034144495 countsByYear W30341444952021 @default.
- W3034144495 countsByYear W30341444952022 @default.
- W3034144495 countsByYear W30341444952023 @default.
- W3034144495 crossrefType "journal-article" @default.
- W3034144495 hasAuthorship W3034144495A5024180326 @default.
- W3034144495 hasAuthorship W3034144495A5043916192 @default.
- W3034144495 hasAuthorship W3034144495A5057774088 @default.
- W3034144495 hasAuthorship W3034144495A5075221279 @default.
- W3034144495 hasAuthorship W3034144495A5084962743 @default.
- W3034144495 hasConcept C111919701 @default.
- W3034144495 hasConcept C124504099 @default.
- W3034144495 hasConcept C127162648 @default.
- W3034144495 hasConcept C138885662 @default.
- W3034144495 hasConcept C153180895 @default.
- W3034144495 hasConcept C154945302 @default.
- W3034144495 hasConcept C177264268 @default.
- W3034144495 hasConcept C199360897 @default.
- W3034144495 hasConcept C2776401178 @default.
- W3034144495 hasConcept C2776760102 @default.
- W3034144495 hasConcept C2779960059 @default.
- W3034144495 hasConcept C31258907 @default.
- W3034144495 hasConcept C31972630 @default.
- W3034144495 hasConcept C41008148 @default.
- W3034144495 hasConcept C41895202 @default.
- W3034144495 hasConcept C43126263 @default.
- W3034144495 hasConcept C81363708 @default.
- W3034144495 hasConcept C89600930 @default.
- W3034144495 hasConceptScore W3034144495C111919701 @default.
- W3034144495 hasConceptScore W3034144495C124504099 @default.
- W3034144495 hasConceptScore W3034144495C127162648 @default.
- W3034144495 hasConceptScore W3034144495C138885662 @default.
- W3034144495 hasConceptScore W3034144495C153180895 @default.
- W3034144495 hasConceptScore W3034144495C154945302 @default.
- W3034144495 hasConceptScore W3034144495C177264268 @default.
- W3034144495 hasConceptScore W3034144495C199360897 @default.
- W3034144495 hasConceptScore W3034144495C2776401178 @default.
- W3034144495 hasConceptScore W3034144495C2776760102 @default.
- W3034144495 hasConceptScore W3034144495C2779960059 @default.
- W3034144495 hasConceptScore W3034144495C31258907 @default.
- W3034144495 hasConceptScore W3034144495C31972630 @default.
- W3034144495 hasConceptScore W3034144495C41008148 @default.
- W3034144495 hasConceptScore W3034144495C41895202 @default.
- W3034144495 hasConceptScore W3034144495C43126263 @default.
- W3034144495 hasConceptScore W3034144495C81363708 @default.
- W3034144495 hasConceptScore W3034144495C89600930 @default.
- W3034144495 hasLocation W30341444951 @default.
- W3034144495 hasOpenAccess W3034144495 @default.
- W3034144495 hasPrimaryLocation W30341444951 @default.
- W3034144495 hasRelatedWork W1507266234 @default.
- W3034144495 hasRelatedWork W1669643531 @default.
- W3034144495 hasRelatedWork W2110230079 @default.
- W3034144495 hasRelatedWork W2117664411 @default.
- W3034144495 hasRelatedWork W2117933325 @default.
- W3034144495 hasRelatedWork W2122581818 @default.
- W3034144495 hasRelatedWork W2159066190 @default.
- W3034144495 hasRelatedWork W2739874619 @default.
- W3034144495 hasRelatedWork W2760085659 @default.
- W3034144495 hasRelatedWork W1967061043 @default.
- W3034144495 hasVolume "107" @default.
- W3034144495 isParatext "false" @default.
- W3034144495 isRetracted "false" @default.
- W3034144495 magId "3034144495" @default.
- W3034144495 workType "article" @default.