Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034151881> ?p ?o ?g. }
- W3034151881 endingPage "e0242946" @default.
- W3034151881 startingPage "e0242946" @default.
- W3034151881 abstract "Emotion states recognition using wireless signals is an emerging area of research that has an impact on neuroscientific studies of human behaviour and well-being monitoring. Currently, standoff emotion detection is mostly reliant on the analysis of facial expressions and/or eye movements acquired from optical or video cameras. Meanwhile, although they have been widely accepted for recognizing human emotions from the multimodal data, machine learning approaches have been mostly restricted to subject dependent analyses which lack of generality. In this paper, we report an experimental study which collects heartbeat and breathing signals of 15 participants from radio frequency (RF) reflections off the body followed by novel noise filtering techniques. We propose a novel deep neural network (DNN) architecture based on the fusion of raw RF data and the processed RF signal for classifying and visualising various emotion states. The proposed model achieves high classification accuracy of 71.67 % for independent subjects with 0.71, 0.72 and 0.71 precision, recall and F1-score values respectively. We have compared our results with those obtained from five different classical ML algorithms and it is established that deep learning offers a superior performance even with limited amount of raw RF and post processed time-sequence data. The deep learning model has also been validated by comparing our results with those from ECG signals. Our results indicate that using wireless signals for stand-by emotion state detection is a better alternative to other technologies with high accuracy and have much wider applications in future studies of behavioural sciences." @default.
- W3034151881 created "2020-06-12" @default.
- W3034151881 creator A5025876358 @default.
- W3034151881 creator A5049098538 @default.
- W3034151881 creator A5053956849 @default.
- W3034151881 creator A5067722781 @default.
- W3034151881 creator A5072680811 @default.
- W3034151881 creator A5086060866 @default.
- W3034151881 date "2021-02-03" @default.
- W3034151881 modified "2023-10-02" @default.
- W3034151881 title "Deep learning framework for subject-independent emotion detection using wireless signals" @default.
- W3034151881 cites W1480583224 @default.
- W3034151881 cites W1970308461 @default.
- W3034151881 cites W1984474176 @default.
- W3034151881 cites W2050265252 @default.
- W3034151881 cites W2055442583 @default.
- W3034151881 cites W2069137854 @default.
- W3034151881 cites W2074788634 @default.
- W3034151881 cites W2087405782 @default.
- W3034151881 cites W2103894975 @default.
- W3034151881 cites W2109662877 @default.
- W3034151881 cites W2126707560 @default.
- W3034151881 cites W2137412454 @default.
- W3034151881 cites W2144071965 @default.
- W3034151881 cites W2155043619 @default.
- W3034151881 cites W2156503193 @default.
- W3034151881 cites W2156984202 @default.
- W3034151881 cites W2158417770 @default.
- W3034151881 cites W2215765065 @default.
- W3034151881 cites W2264017649 @default.
- W3034151881 cites W2323555425 @default.
- W3034151881 cites W2333207005 @default.
- W3034151881 cites W2406223855 @default.
- W3034151881 cites W2475596014 @default.
- W3034151881 cites W2525771685 @default.
- W3034151881 cites W2599124244 @default.
- W3034151881 cites W2624419954 @default.
- W3034151881 cites W2626113459 @default.
- W3034151881 cites W2750852530 @default.
- W3034151881 cites W2769507557 @default.
- W3034151881 cites W2796152998 @default.
- W3034151881 cites W2810418809 @default.
- W3034151881 cites W2884996318 @default.
- W3034151881 cites W2894182255 @default.
- W3034151881 cites W2898242330 @default.
- W3034151881 cites W2899370105 @default.
- W3034151881 cites W2941914178 @default.
- W3034151881 cites W2946526173 @default.
- W3034151881 cites W2963869287 @default.
- W3034151881 cites W2971555734 @default.
- W3034151881 cites W2986690412 @default.
- W3034151881 cites W3003908700 @default.
- W3034151881 cites W3036780692 @default.
- W3034151881 cites W3046305306 @default.
- W3034151881 doi "https://doi.org/10.1371/journal.pone.0242946" @default.
- W3034151881 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7857608" @default.
- W3034151881 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33534826" @default.
- W3034151881 hasPublicationYear "2021" @default.
- W3034151881 type Work @default.
- W3034151881 sameAs 3034151881 @default.
- W3034151881 citedByCount "24" @default.
- W3034151881 countsByYear W30341518812021 @default.
- W3034151881 countsByYear W30341518812022 @default.
- W3034151881 countsByYear W30341518812023 @default.
- W3034151881 crossrefType "journal-article" @default.
- W3034151881 hasAuthorship W3034151881A5025876358 @default.
- W3034151881 hasAuthorship W3034151881A5049098538 @default.
- W3034151881 hasAuthorship W3034151881A5053956849 @default.
- W3034151881 hasAuthorship W3034151881A5067722781 @default.
- W3034151881 hasAuthorship W3034151881A5072680811 @default.
- W3034151881 hasAuthorship W3034151881A5086060866 @default.
- W3034151881 hasBestOaLocation W30341518811 @default.
- W3034151881 hasConcept C108583219 @default.
- W3034151881 hasConcept C119857082 @default.
- W3034151881 hasConcept C13852961 @default.
- W3034151881 hasConcept C153180895 @default.
- W3034151881 hasConcept C154945302 @default.
- W3034151881 hasConcept C28490314 @default.
- W3034151881 hasConcept C38652104 @default.
- W3034151881 hasConcept C41008148 @default.
- W3034151881 hasConcept C50644808 @default.
- W3034151881 hasConcept C555944384 @default.
- W3034151881 hasConcept C76155785 @default.
- W3034151881 hasConceptScore W3034151881C108583219 @default.
- W3034151881 hasConceptScore W3034151881C119857082 @default.
- W3034151881 hasConceptScore W3034151881C13852961 @default.
- W3034151881 hasConceptScore W3034151881C153180895 @default.
- W3034151881 hasConceptScore W3034151881C154945302 @default.
- W3034151881 hasConceptScore W3034151881C28490314 @default.
- W3034151881 hasConceptScore W3034151881C38652104 @default.
- W3034151881 hasConceptScore W3034151881C41008148 @default.
- W3034151881 hasConceptScore W3034151881C50644808 @default.
- W3034151881 hasConceptScore W3034151881C555944384 @default.
- W3034151881 hasConceptScore W3034151881C76155785 @default.
- W3034151881 hasIssue "2" @default.
- W3034151881 hasLocation W30341518811 @default.
- W3034151881 hasLocation W30341518812 @default.
- W3034151881 hasLocation W30341518813 @default.