Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034156763> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3034156763 abstract "Road traffic sign detection and recognition problem has always been a hot and difficult point in the field of intelligent driving. Complex road conditions always take challenges to the detection and identification of traffic signs. This paper attempts to use machine learning and deep learning algorithms to detect and identify traffic signs. The study is realized in two basic parts. The first part is detection on traffic sign. A color probability model based on YCbCr space and an improved color enhancement method based on MSER are proposed to detect Candidate Areas (CA). By using these two methods, most negative samples in CA can be reduced. Then, in the Region of Interest (ROI) feature extraction stage, PHOG features with strong spatial information expression ability are combined with SVM to classify and process. The second part is recognition on traffic sign. An improved lenet-5 model is used to promote speed and accuracy of the recognition. It has been proven that the proposed model has the characteristics of shorter classification time, higher classification accuracy and better generalization ability by comparing the other algorithm with ours used in GTSDB data set." @default.
- W3034156763 created "2020-06-12" @default.
- W3034156763 creator A5002332840 @default.
- W3034156763 creator A5058481549 @default.
- W3034156763 creator A5060143092 @default.
- W3034156763 date "2019-12-01" @default.
- W3034156763 modified "2023-09-24" @default.
- W3034156763 title "Detection and recognition on traffic sign in complex scene" @default.
- W3034156763 cites W1000462 @default.
- W3034156763 cites W2012742472 @default.
- W3034156763 cites W2046796782 @default.
- W3034156763 cites W2049043413 @default.
- W3034156763 cites W2080239434 @default.
- W3034156763 cites W2112316183 @default.
- W3034156763 cites W2115923799 @default.
- W3034156763 cites W2116929232 @default.
- W3034156763 cites W2125085157 @default.
- W3034156763 cites W2161969291 @default.
- W3034156763 cites W3197871958 @default.
- W3034156763 doi "https://doi.org/10.1109/icisce48695.2019.00058" @default.
- W3034156763 hasPublicationYear "2019" @default.
- W3034156763 type Work @default.
- W3034156763 sameAs 3034156763 @default.
- W3034156763 citedByCount "1" @default.
- W3034156763 countsByYear W30341567632022 @default.
- W3034156763 crossrefType "proceedings-article" @default.
- W3034156763 hasAuthorship W3034156763A5002332840 @default.
- W3034156763 hasAuthorship W3034156763A5058481549 @default.
- W3034156763 hasAuthorship W3034156763A5060143092 @default.
- W3034156763 hasConcept C115961682 @default.
- W3034156763 hasConcept C12267149 @default.
- W3034156763 hasConcept C127413603 @default.
- W3034156763 hasConcept C134306372 @default.
- W3034156763 hasConcept C138885662 @default.
- W3034156763 hasConcept C139676723 @default.
- W3034156763 hasConcept C142616399 @default.
- W3034156763 hasConcept C147176958 @default.
- W3034156763 hasConcept C153180895 @default.
- W3034156763 hasConcept C154945302 @default.
- W3034156763 hasConcept C177148314 @default.
- W3034156763 hasConcept C202444582 @default.
- W3034156763 hasConcept C2776401178 @default.
- W3034156763 hasConcept C2779407163 @default.
- W3034156763 hasConcept C2983860417 @default.
- W3034156763 hasConcept C31972630 @default.
- W3034156763 hasConcept C33923547 @default.
- W3034156763 hasConcept C41008148 @default.
- W3034156763 hasConcept C41895202 @default.
- W3034156763 hasConcept C47796450 @default.
- W3034156763 hasConcept C52622490 @default.
- W3034156763 hasConcept C6528762 @default.
- W3034156763 hasConcept C9417928 @default.
- W3034156763 hasConcept C9652623 @default.
- W3034156763 hasConceptScore W3034156763C115961682 @default.
- W3034156763 hasConceptScore W3034156763C12267149 @default.
- W3034156763 hasConceptScore W3034156763C127413603 @default.
- W3034156763 hasConceptScore W3034156763C134306372 @default.
- W3034156763 hasConceptScore W3034156763C138885662 @default.
- W3034156763 hasConceptScore W3034156763C139676723 @default.
- W3034156763 hasConceptScore W3034156763C142616399 @default.
- W3034156763 hasConceptScore W3034156763C147176958 @default.
- W3034156763 hasConceptScore W3034156763C153180895 @default.
- W3034156763 hasConceptScore W3034156763C154945302 @default.
- W3034156763 hasConceptScore W3034156763C177148314 @default.
- W3034156763 hasConceptScore W3034156763C202444582 @default.
- W3034156763 hasConceptScore W3034156763C2776401178 @default.
- W3034156763 hasConceptScore W3034156763C2779407163 @default.
- W3034156763 hasConceptScore W3034156763C2983860417 @default.
- W3034156763 hasConceptScore W3034156763C31972630 @default.
- W3034156763 hasConceptScore W3034156763C33923547 @default.
- W3034156763 hasConceptScore W3034156763C41008148 @default.
- W3034156763 hasConceptScore W3034156763C41895202 @default.
- W3034156763 hasConceptScore W3034156763C47796450 @default.
- W3034156763 hasConceptScore W3034156763C52622490 @default.
- W3034156763 hasConceptScore W3034156763C6528762 @default.
- W3034156763 hasConceptScore W3034156763C9417928 @default.
- W3034156763 hasConceptScore W3034156763C9652623 @default.
- W3034156763 hasLocation W30341567631 @default.
- W3034156763 hasOpenAccess W3034156763 @default.
- W3034156763 hasPrimaryLocation W30341567631 @default.
- W3034156763 hasRelatedWork W1000462 @default.
- W3034156763 hasRelatedWork W12303988 @default.
- W3034156763 hasRelatedWork W14043209 @default.
- W3034156763 hasRelatedWork W247179 @default.
- W3034156763 hasRelatedWork W2834797 @default.
- W3034156763 hasRelatedWork W2988963 @default.
- W3034156763 hasRelatedWork W5576225 @default.
- W3034156763 hasRelatedWork W8261557 @default.
- W3034156763 hasRelatedWork W9958333 @default.
- W3034156763 hasRelatedWork W1660204 @default.
- W3034156763 isParatext "false" @default.
- W3034156763 isRetracted "false" @default.
- W3034156763 magId "3034156763" @default.
- W3034156763 workType "article" @default.