Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034171421> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W3034171421 endingPage "1" @default.
- W3034171421 startingPage "1" @default.
- W3034171421 abstract "Deep learning has been widely used in hyperspectral image (HSI) classification. However, a deep learning model is a data-driven machine learning method, and collecting labeled data is quite time-consuming for an HSI classification task, which means that a deep learning model needs a lot of labeled data and cannot deal with the small sample problem. We explore the small sample classification problem of HSI with graph convolutional network (GCN). First, HSI with a small number of labeled samples are treated as a graph. Then, the GCN (an efficient variant of convolutional neural networks) operates directly on the graph constructed from the HSI. GCN utilizes the adjacency nodes in graph to approximate the convolution. In other words, graph convolution can use both labeled and unlabeled nodes. Therefore, our method is a semisupervised method. Three HSI are used to assess the performance of the proposed method. The experimental results show that the proposed method outperforms the traditional semisupervised methods and advanced deep learning methods." @default.
- W3034171421 created "2020-06-12" @default.
- W3034171421 creator A5027117106 @default.
- W3034171421 creator A5039991862 @default.
- W3034171421 creator A5042512723 @default.
- W3034171421 creator A5069652653 @default.
- W3034171421 creator A5071603980 @default.
- W3034171421 creator A5074045214 @default.
- W3034171421 date "2020-06-01" @default.
- W3034171421 modified "2023-10-14" @default.
- W3034171421 title "Semisupervised graph convolutional network for hyperspectral image classification" @default.
- W3034171421 doi "https://doi.org/10.1117/1.jrs.14.026516" @default.
- W3034171421 hasPublicationYear "2020" @default.
- W3034171421 type Work @default.
- W3034171421 sameAs 3034171421 @default.
- W3034171421 citedByCount "15" @default.
- W3034171421 countsByYear W30341714212021 @default.
- W3034171421 countsByYear W30341714212022 @default.
- W3034171421 countsByYear W30341714212023 @default.
- W3034171421 crossrefType "journal-article" @default.
- W3034171421 hasAuthorship W3034171421A5027117106 @default.
- W3034171421 hasAuthorship W3034171421A5039991862 @default.
- W3034171421 hasAuthorship W3034171421A5042512723 @default.
- W3034171421 hasAuthorship W3034171421A5069652653 @default.
- W3034171421 hasAuthorship W3034171421A5071603980 @default.
- W3034171421 hasAuthorship W3034171421A5074045214 @default.
- W3034171421 hasConcept C108583219 @default.
- W3034171421 hasConcept C110484373 @default.
- W3034171421 hasConcept C11413529 @default.
- W3034171421 hasConcept C115961682 @default.
- W3034171421 hasConcept C119857082 @default.
- W3034171421 hasConcept C132525143 @default.
- W3034171421 hasConcept C153180895 @default.
- W3034171421 hasConcept C154945302 @default.
- W3034171421 hasConcept C159078339 @default.
- W3034171421 hasConcept C41008148 @default.
- W3034171421 hasConcept C45347329 @default.
- W3034171421 hasConcept C50644808 @default.
- W3034171421 hasConcept C75294576 @default.
- W3034171421 hasConcept C80444323 @default.
- W3034171421 hasConcept C81363708 @default.
- W3034171421 hasConceptScore W3034171421C108583219 @default.
- W3034171421 hasConceptScore W3034171421C110484373 @default.
- W3034171421 hasConceptScore W3034171421C11413529 @default.
- W3034171421 hasConceptScore W3034171421C115961682 @default.
- W3034171421 hasConceptScore W3034171421C119857082 @default.
- W3034171421 hasConceptScore W3034171421C132525143 @default.
- W3034171421 hasConceptScore W3034171421C153180895 @default.
- W3034171421 hasConceptScore W3034171421C154945302 @default.
- W3034171421 hasConceptScore W3034171421C159078339 @default.
- W3034171421 hasConceptScore W3034171421C41008148 @default.
- W3034171421 hasConceptScore W3034171421C45347329 @default.
- W3034171421 hasConceptScore W3034171421C50644808 @default.
- W3034171421 hasConceptScore W3034171421C75294576 @default.
- W3034171421 hasConceptScore W3034171421C80444323 @default.
- W3034171421 hasConceptScore W3034171421C81363708 @default.
- W3034171421 hasFunder F4320321001 @default.
- W3034171421 hasIssue "02" @default.
- W3034171421 hasLocation W30341714211 @default.
- W3034171421 hasOpenAccess W3034171421 @default.
- W3034171421 hasPrimaryLocation W30341714211 @default.
- W3034171421 hasRelatedWork W2770149305 @default.
- W3034171421 hasRelatedWork W2911497689 @default.
- W3034171421 hasRelatedWork W2952813363 @default.
- W3034171421 hasRelatedWork W2964954556 @default.
- W3034171421 hasRelatedWork W2972076240 @default.
- W3034171421 hasRelatedWork W3019910406 @default.
- W3034171421 hasRelatedWork W3167930666 @default.
- W3034171421 hasRelatedWork W3176438653 @default.
- W3034171421 hasRelatedWork W4360783045 @default.
- W3034171421 hasRelatedWork W4378678253 @default.
- W3034171421 hasVolume "14" @default.
- W3034171421 isParatext "false" @default.
- W3034171421 isRetracted "false" @default.
- W3034171421 magId "3034171421" @default.
- W3034171421 workType "article" @default.