Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034239264> ?p ?o ?g. }
- W3034239264 abstract "Traditional Question Generation (TQG) aims to generate a question given an input passage and an answer. When there is a sequence of answers, we can perform Sequential Question Generation (SQG) to produce a series of interconnected questions. Since the frequently occurred information omission and coreference between questions, SQG is rather challenging. Prior works regarded SQG as a dialog generation task and recurrently produced each question. However, they suffered from problems caused by error cascades and could only capture limited context dependencies. To this end, we generate questions in a semi-autoregressive way. Our model divides questions into different groups and generates each group of them in parallel. During this process, it builds two graphs focusing on information from passages, answers respectively and performs dual-graph interaction to get information for generation. Besides, we design an answer-aware attention mechanism and the coarse-to-fine generation scenario. Experiments on our new dataset containing 81.9K questions show that our model substantially outperforms prior works." @default.
- W3034239264 created "2020-06-19" @default.
- W3034239264 creator A5029568096 @default.
- W3034239264 creator A5067695432 @default.
- W3034239264 date "2020-01-01" @default.
- W3034239264 modified "2023-09-23" @default.
- W3034239264 title "Learning to Ask More: Semi-Autoregressive Sequential Question Generation under Dual-Graph Interaction" @default.
- W3034239264 cites W1531374185 @default.
- W3034239264 cites W1924770834 @default.
- W3034239264 cites W2101105183 @default.
- W3034239264 cites W2130942839 @default.
- W3034239264 cites W2133512280 @default.
- W3034239264 cites W2151466713 @default.
- W3034239264 cites W2153579005 @default.
- W3034239264 cites W2154652894 @default.
- W3034239264 cites W2161466446 @default.
- W3034239264 cites W2250425483 @default.
- W3034239264 cites W2492775806 @default.
- W3034239264 cites W2557764419 @default.
- W3034239264 cites W2564256581 @default.
- W3034239264 cites W2606333299 @default.
- W3034239264 cites W2606974598 @default.
- W3034239264 cites W2622069672 @default.
- W3034239264 cites W2624022918 @default.
- W3034239264 cites W2757978590 @default.
- W3034239264 cites W2807750936 @default.
- W3034239264 cites W2812757605 @default.
- W3034239264 cites W2888302696 @default.
- W3034239264 cites W2890166583 @default.
- W3034239264 cites W2891946694 @default.
- W3034239264 cites W2912231389 @default.
- W3034239264 cites W2914130867 @default.
- W3034239264 cites W2950898568 @default.
- W3034239264 cites W2950970512 @default.
- W3034239264 cites W2951785908 @default.
- W3034239264 cites W2952939310 @default.
- W3034239264 cites W2962717047 @default.
- W3034239264 cites W2962977247 @default.
- W3034239264 cites W2963167649 @default.
- W3034239264 cites W2963351776 @default.
- W3034239264 cites W2963360026 @default.
- W3034239264 cites W2963403868 @default.
- W3034239264 cites W2963748441 @default.
- W3034239264 cites W2963790827 @default.
- W3034239264 cites W2964223283 @default.
- W3034239264 cites W2964236999 @default.
- W3034239264 cites W2983655111 @default.
- W3034239264 cites W803028973 @default.
- W3034239264 doi "https://doi.org/10.18653/v1/2020.acl-main.21" @default.
- W3034239264 hasPublicationYear "2020" @default.
- W3034239264 type Work @default.
- W3034239264 sameAs 3034239264 @default.
- W3034239264 citedByCount "11" @default.
- W3034239264 countsByYear W30342392642021 @default.
- W3034239264 crossrefType "proceedings-article" @default.
- W3034239264 hasAuthorship W3034239264A5029568096 @default.
- W3034239264 hasAuthorship W3034239264A5067695432 @default.
- W3034239264 hasBestOaLocation W30342392641 @default.
- W3034239264 hasConcept C119857082 @default.
- W3034239264 hasConcept C124952713 @default.
- W3034239264 hasConcept C132525143 @default.
- W3034239264 hasConcept C136264566 @default.
- W3034239264 hasConcept C136764020 @default.
- W3034239264 hasConcept C138268822 @default.
- W3034239264 hasConcept C142362112 @default.
- W3034239264 hasConcept C149782125 @default.
- W3034239264 hasConcept C151730666 @default.
- W3034239264 hasConcept C154945302 @default.
- W3034239264 hasConcept C159877910 @default.
- W3034239264 hasConcept C162324750 @default.
- W3034239264 hasConcept C173853756 @default.
- W3034239264 hasConcept C187736073 @default.
- W3034239264 hasConcept C204321447 @default.
- W3034239264 hasConcept C2779343474 @default.
- W3034239264 hasConcept C2780451532 @default.
- W3034239264 hasConcept C2780980858 @default.
- W3034239264 hasConcept C28076734 @default.
- W3034239264 hasConcept C33923547 @default.
- W3034239264 hasConcept C41008148 @default.
- W3034239264 hasConcept C80444323 @default.
- W3034239264 hasConcept C86803240 @default.
- W3034239264 hasConcept C90329073 @default.
- W3034239264 hasConceptScore W3034239264C119857082 @default.
- W3034239264 hasConceptScore W3034239264C124952713 @default.
- W3034239264 hasConceptScore W3034239264C132525143 @default.
- W3034239264 hasConceptScore W3034239264C136264566 @default.
- W3034239264 hasConceptScore W3034239264C136764020 @default.
- W3034239264 hasConceptScore W3034239264C138268822 @default.
- W3034239264 hasConceptScore W3034239264C142362112 @default.
- W3034239264 hasConceptScore W3034239264C149782125 @default.
- W3034239264 hasConceptScore W3034239264C151730666 @default.
- W3034239264 hasConceptScore W3034239264C154945302 @default.
- W3034239264 hasConceptScore W3034239264C159877910 @default.
- W3034239264 hasConceptScore W3034239264C162324750 @default.
- W3034239264 hasConceptScore W3034239264C173853756 @default.
- W3034239264 hasConceptScore W3034239264C187736073 @default.
- W3034239264 hasConceptScore W3034239264C204321447 @default.
- W3034239264 hasConceptScore W3034239264C2779343474 @default.
- W3034239264 hasConceptScore W3034239264C2780451532 @default.
- W3034239264 hasConceptScore W3034239264C2780980858 @default.