Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034285850> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3034285850 endingPage "117" @default.
- W3034285850 startingPage "101" @default.
- W3034285850 abstract "Filling large data-gaps in Micro-Meteorological data has mostly been done using interpolation techniques based on a marginal distribution sampling. Those methods work well but need a large horizon of the previous events to achieve good results since they do not model the system but only rely on previously encountered iterations. In this paper, we propose to use multi-head deep attention networks to fill gaps in Micro-Meteorological Data. This methodology couples large-scale information extraction with modeling capabilities that cannot be achieved by interpolation-like techniques. Unlike Bidirectional RNNs, our architecture is not recurrent, it is simple to tune and our data efficiency is higher. We apply our architecture to real-life data and clearly show its applicability in agriculture, furthermore, we show that it could be used to solve related problems such as filling gaps in cyclic-multivariate-time-series." @default.
- W3034285850 created "2020-06-19" @default.
- W3034285850 creator A5004267040 @default.
- W3034285850 creator A5045309524 @default.
- W3034285850 creator A5064090994 @default.
- W3034285850 creator A5075511493 @default.
- W3034285850 creator A5082817470 @default.
- W3034285850 creator A5090913728 @default.
- W3034285850 date "2021-01-01" @default.
- W3034285850 modified "2023-10-12" @default.
- W3034285850 title "Filling Gaps in Micro-meteorological Data" @default.
- W3034285850 cites W1566256432 @default.
- W3034285850 cites W2036197592 @default.
- W3034285850 cites W2064675550 @default.
- W3034285850 cites W2124437404 @default.
- W3034285850 cites W2138083030 @default.
- W3034285850 cites W2151478249 @default.
- W3034285850 cites W2157331557 @default.
- W3034285850 cites W2742413277 @default.
- W3034285850 cites W2785822431 @default.
- W3034285850 cites W2883187881 @default.
- W3034285850 cites W2964010366 @default.
- W3034285850 doi "https://doi.org/10.1007/978-3-030-67670-4_7" @default.
- W3034285850 hasPublicationYear "2021" @default.
- W3034285850 type Work @default.
- W3034285850 sameAs 3034285850 @default.
- W3034285850 citedByCount "3" @default.
- W3034285850 countsByYear W30342858502022 @default.
- W3034285850 countsByYear W30342858502023 @default.
- W3034285850 crossrefType "book-chapter" @default.
- W3034285850 hasAuthorship W3034285850A5004267040 @default.
- W3034285850 hasAuthorship W3034285850A5045309524 @default.
- W3034285850 hasAuthorship W3034285850A5064090994 @default.
- W3034285850 hasAuthorship W3034285850A5075511493 @default.
- W3034285850 hasAuthorship W3034285850A5082817470 @default.
- W3034285850 hasAuthorship W3034285850A5090913728 @default.
- W3034285850 hasBestOaLocation W30342858502 @default.
- W3034285850 hasConcept C104114177 @default.
- W3034285850 hasConcept C106131492 @default.
- W3034285850 hasConcept C111472728 @default.
- W3034285850 hasConcept C119857082 @default.
- W3034285850 hasConcept C123657996 @default.
- W3034285850 hasConcept C124101348 @default.
- W3034285850 hasConcept C137800194 @default.
- W3034285850 hasConcept C138885662 @default.
- W3034285850 hasConcept C140779682 @default.
- W3034285850 hasConcept C142362112 @default.
- W3034285850 hasConcept C151406439 @default.
- W3034285850 hasConcept C153349607 @default.
- W3034285850 hasConcept C154945302 @default.
- W3034285850 hasConcept C2780586882 @default.
- W3034285850 hasConcept C31972630 @default.
- W3034285850 hasConcept C41008148 @default.
- W3034285850 hasConceptScore W3034285850C104114177 @default.
- W3034285850 hasConceptScore W3034285850C106131492 @default.
- W3034285850 hasConceptScore W3034285850C111472728 @default.
- W3034285850 hasConceptScore W3034285850C119857082 @default.
- W3034285850 hasConceptScore W3034285850C123657996 @default.
- W3034285850 hasConceptScore W3034285850C124101348 @default.
- W3034285850 hasConceptScore W3034285850C137800194 @default.
- W3034285850 hasConceptScore W3034285850C138885662 @default.
- W3034285850 hasConceptScore W3034285850C140779682 @default.
- W3034285850 hasConceptScore W3034285850C142362112 @default.
- W3034285850 hasConceptScore W3034285850C151406439 @default.
- W3034285850 hasConceptScore W3034285850C153349607 @default.
- W3034285850 hasConceptScore W3034285850C154945302 @default.
- W3034285850 hasConceptScore W3034285850C2780586882 @default.
- W3034285850 hasConceptScore W3034285850C31972630 @default.
- W3034285850 hasConceptScore W3034285850C41008148 @default.
- W3034285850 hasLocation W30342858501 @default.
- W3034285850 hasLocation W30342858502 @default.
- W3034285850 hasLocation W30342858503 @default.
- W3034285850 hasLocation W30342858504 @default.
- W3034285850 hasLocation W30342858505 @default.
- W3034285850 hasOpenAccess W3034285850 @default.
- W3034285850 hasPrimaryLocation W30342858501 @default.
- W3034285850 hasRelatedWork W1585007175 @default.
- W3034285850 hasRelatedWork W2144385241 @default.
- W3034285850 hasRelatedWork W2165950148 @default.
- W3034285850 hasRelatedWork W2338854850 @default.
- W3034285850 hasRelatedWork W2382521049 @default.
- W3034285850 hasRelatedWork W2951497643 @default.
- W3034285850 hasRelatedWork W3101625811 @default.
- W3034285850 hasRelatedWork W3121712119 @default.
- W3034285850 hasRelatedWork W4253593777 @default.
- W3034285850 hasRelatedWork W4300101996 @default.
- W3034285850 isParatext "false" @default.
- W3034285850 isRetracted "false" @default.
- W3034285850 magId "3034285850" @default.
- W3034285850 workType "book-chapter" @default.