Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034339022> ?p ?o ?g. }
- W3034339022 endingPage "E170" @default.
- W3034339022 startingPage "E163" @default.
- W3034339022 abstract "Due to the huge amount of data generated by time-domain airborne electromagnetic (AEM) systems, conductivity depth imaging methods are widely used to help in the interpretation of these data because they can be generated quickly and easily. We have introduced a new imaging method generated using a deep neural network. The network structure combines four convolutional neural networks with a long short-term memory technique and adopts an error back-propagation scheme to update the parameters. A deep hierarchical structure is used to extract and store the complex nonlinear relationship between the model and electromagnetic (EM) responses, creating results close to 1D inversions. To check the effectiveness, we have examined our algorithm on synthetic and survey AEM data. The imaging result shows that this method, when using reasonable network parameters, can not only image well at high speed, but the method also is not very sensitive to noise. Another advantage of this method is that once the training is completed on a well-distributed training set, the network can be used without any changes to process other data sets from an identically configured AEM system." @default.
- W3034339022 created "2020-06-19" @default.
- W3034339022 creator A5000526209 @default.
- W3034339022 creator A5049377516 @default.
- W3034339022 creator A5050010563 @default.
- W3034339022 creator A5068885142 @default.
- W3034339022 creator A5088527092 @default.
- W3034339022 date "2020-09-01" @default.
- W3034339022 modified "2023-10-17" @default.
- W3034339022 title "Fast imaging of time-domain airborne EM data using deep learning technology" @default.
- W3034339022 cites W1582774210 @default.
- W3034339022 cites W1988842415 @default.
- W3034339022 cites W2029294571 @default.
- W3034339022 cites W2031787946 @default.
- W3034339022 cites W2036195729 @default.
- W3034339022 cites W2054526352 @default.
- W3034339022 cites W2062734003 @default.
- W3034339022 cites W2079098033 @default.
- W3034339022 cites W2085698267 @default.
- W3034339022 cites W2086347619 @default.
- W3034339022 cites W2113143455 @default.
- W3034339022 cites W2123032461 @default.
- W3034339022 cites W2137983211 @default.
- W3034339022 cites W2142187322 @default.
- W3034339022 cites W2164838707 @default.
- W3034339022 cites W2197030879 @default.
- W3034339022 cites W2313214407 @default.
- W3034339022 cites W2592517375 @default.
- W3034339022 cites W2604268533 @default.
- W3034339022 cites W2755404879 @default.
- W3034339022 cites W2804494384 @default.
- W3034339022 cites W2808760859 @default.
- W3034339022 cites W2891255706 @default.
- W3034339022 cites W2906386705 @default.
- W3034339022 cites W2918506850 @default.
- W3034339022 cites W2935135048 @default.
- W3034339022 cites W2981589591 @default.
- W3034339022 cites W2986406282 @default.
- W3034339022 doi "https://doi.org/10.1190/geo2019-0015.1" @default.
- W3034339022 hasPublicationYear "2020" @default.
- W3034339022 type Work @default.
- W3034339022 sameAs 3034339022 @default.
- W3034339022 citedByCount "32" @default.
- W3034339022 countsByYear W30343390222021 @default.
- W3034339022 countsByYear W30343390222022 @default.
- W3034339022 countsByYear W30343390222023 @default.
- W3034339022 crossrefType "journal-article" @default.
- W3034339022 hasAuthorship W3034339022A5000526209 @default.
- W3034339022 hasAuthorship W3034339022A5049377516 @default.
- W3034339022 hasAuthorship W3034339022A5050010563 @default.
- W3034339022 hasAuthorship W3034339022A5068885142 @default.
- W3034339022 hasAuthorship W3034339022A5088527092 @default.
- W3034339022 hasConcept C103824480 @default.
- W3034339022 hasConcept C108583219 @default.
- W3034339022 hasConcept C111919701 @default.
- W3034339022 hasConcept C11413529 @default.
- W3034339022 hasConcept C115961682 @default.
- W3034339022 hasConcept C121332964 @default.
- W3034339022 hasConcept C124101348 @default.
- W3034339022 hasConcept C134306372 @default.
- W3034339022 hasConcept C153180895 @default.
- W3034339022 hasConcept C154945302 @default.
- W3034339022 hasConcept C158622935 @default.
- W3034339022 hasConcept C177264268 @default.
- W3034339022 hasConcept C199360897 @default.
- W3034339022 hasConcept C31972630 @default.
- W3034339022 hasConcept C33923547 @default.
- W3034339022 hasConcept C36503486 @default.
- W3034339022 hasConcept C41008148 @default.
- W3034339022 hasConcept C50644808 @default.
- W3034339022 hasConcept C58489278 @default.
- W3034339022 hasConcept C62520636 @default.
- W3034339022 hasConcept C81363708 @default.
- W3034339022 hasConcept C98045186 @default.
- W3034339022 hasConcept C99498987 @default.
- W3034339022 hasConceptScore W3034339022C103824480 @default.
- W3034339022 hasConceptScore W3034339022C108583219 @default.
- W3034339022 hasConceptScore W3034339022C111919701 @default.
- W3034339022 hasConceptScore W3034339022C11413529 @default.
- W3034339022 hasConceptScore W3034339022C115961682 @default.
- W3034339022 hasConceptScore W3034339022C121332964 @default.
- W3034339022 hasConceptScore W3034339022C124101348 @default.
- W3034339022 hasConceptScore W3034339022C134306372 @default.
- W3034339022 hasConceptScore W3034339022C153180895 @default.
- W3034339022 hasConceptScore W3034339022C154945302 @default.
- W3034339022 hasConceptScore W3034339022C158622935 @default.
- W3034339022 hasConceptScore W3034339022C177264268 @default.
- W3034339022 hasConceptScore W3034339022C199360897 @default.
- W3034339022 hasConceptScore W3034339022C31972630 @default.
- W3034339022 hasConceptScore W3034339022C33923547 @default.
- W3034339022 hasConceptScore W3034339022C36503486 @default.
- W3034339022 hasConceptScore W3034339022C41008148 @default.
- W3034339022 hasConceptScore W3034339022C50644808 @default.
- W3034339022 hasConceptScore W3034339022C58489278 @default.
- W3034339022 hasConceptScore W3034339022C62520636 @default.
- W3034339022 hasConceptScore W3034339022C81363708 @default.
- W3034339022 hasConceptScore W3034339022C98045186 @default.
- W3034339022 hasConceptScore W3034339022C99498987 @default.