Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034347740> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3034347740 endingPage "32" @default.
- W3034347740 startingPage "25" @default.
- W3034347740 abstract "Data mining is a technique of research necessary hidden information in a database to find interesting pattern. In the health sector, data mining can be used to diagnose a disease from the patient's medical data record. This research used a Chronic Kidney Disease (CKD) dataset obtained from UCI machine learning repository. In this dataset almost half of attributes are numeric types that are continuous. Continuous attributes can make accuracy lower because the data forms are unlimited, so it need to be transformed into discrete. In certain cases, if all attributes are used, it can produce a low level of accuracy because it is irrelevant and does not have a correlation with the target class. So, these attributes need to be selected in advance to get more accurate results. Classification is one technique in data mining. Which one of classification algorithms is C4.5. Purpose of this study is increasing accuracy of C4.5 algorithm by applaying discretization and Correlation-Based Feature Selection (CFS) for chronic kidney disease diagnosis. Accuracy improvement is done by applying discretization and CFS. Discretization is used to handle continuous value, while CFS is used as attribute selection. Experiment was conducted with WEKA (Waikato Environment for Knowledge Analysis). By applying discretization and CFS in C4.5 shows an increase in accuracy of 0.5%. The C4.5 has an accuracy of 97%. The accuracy of C4.5 with discretization are 97.25% and accuracy of C4.5 algorithm with discretization and CFS is 97.5%." @default.
- W3034347740 created "2020-06-19" @default.
- W3034347740 creator A5009847313 @default.
- W3034347740 creator A5010033495 @default.
- W3034347740 date "2020-03-31" @default.
- W3034347740 modified "2023-09-24" @default.
- W3034347740 title "Increasing Accuracy of C4.5 Algorithm by Applying Discretization and Correlation-based Feature Selection for Chronic Kidney Disease Diagnosis" @default.
- W3034347740 hasPublicationYear "2020" @default.
- W3034347740 type Work @default.
- W3034347740 sameAs 3034347740 @default.
- W3034347740 citedByCount "0" @default.
- W3034347740 crossrefType "journal-article" @default.
- W3034347740 hasAuthorship W3034347740A5009847313 @default.
- W3034347740 hasAuthorship W3034347740A5010033495 @default.
- W3034347740 hasConcept C105427703 @default.
- W3034347740 hasConcept C110083411 @default.
- W3034347740 hasConcept C111012933 @default.
- W3034347740 hasConcept C11413529 @default.
- W3034347740 hasConcept C117220453 @default.
- W3034347740 hasConcept C119857082 @default.
- W3034347740 hasConcept C124101348 @default.
- W3034347740 hasConcept C126148662 @default.
- W3034347740 hasConcept C134306372 @default.
- W3034347740 hasConcept C138885662 @default.
- W3034347740 hasConcept C148483581 @default.
- W3034347740 hasConcept C153180895 @default.
- W3034347740 hasConcept C154945302 @default.
- W3034347740 hasConcept C2524010 @default.
- W3034347740 hasConcept C2776401178 @default.
- W3034347740 hasConcept C33923547 @default.
- W3034347740 hasConcept C41008148 @default.
- W3034347740 hasConcept C41895202 @default.
- W3034347740 hasConcept C73000952 @default.
- W3034347740 hasConcept C81917197 @default.
- W3034347740 hasConceptScore W3034347740C105427703 @default.
- W3034347740 hasConceptScore W3034347740C110083411 @default.
- W3034347740 hasConceptScore W3034347740C111012933 @default.
- W3034347740 hasConceptScore W3034347740C11413529 @default.
- W3034347740 hasConceptScore W3034347740C117220453 @default.
- W3034347740 hasConceptScore W3034347740C119857082 @default.
- W3034347740 hasConceptScore W3034347740C124101348 @default.
- W3034347740 hasConceptScore W3034347740C126148662 @default.
- W3034347740 hasConceptScore W3034347740C134306372 @default.
- W3034347740 hasConceptScore W3034347740C138885662 @default.
- W3034347740 hasConceptScore W3034347740C148483581 @default.
- W3034347740 hasConceptScore W3034347740C153180895 @default.
- W3034347740 hasConceptScore W3034347740C154945302 @default.
- W3034347740 hasConceptScore W3034347740C2524010 @default.
- W3034347740 hasConceptScore W3034347740C2776401178 @default.
- W3034347740 hasConceptScore W3034347740C33923547 @default.
- W3034347740 hasConceptScore W3034347740C41008148 @default.
- W3034347740 hasConceptScore W3034347740C41895202 @default.
- W3034347740 hasConceptScore W3034347740C73000952 @default.
- W3034347740 hasConceptScore W3034347740C81917197 @default.
- W3034347740 hasIssue "1" @default.
- W3034347740 hasLocation W30343477401 @default.
- W3034347740 hasOpenAccess W3034347740 @default.
- W3034347740 hasPrimaryLocation W30343477401 @default.
- W3034347740 hasRelatedWork W1963870857 @default.
- W3034347740 hasRelatedWork W1967689665 @default.
- W3034347740 hasRelatedWork W2157460758 @default.
- W3034347740 hasRelatedWork W2184549704 @default.
- W3034347740 hasRelatedWork W2189025417 @default.
- W3034347740 hasRelatedWork W2606427759 @default.
- W3034347740 hasRelatedWork W2784634011 @default.
- W3034347740 hasRelatedWork W2789271556 @default.
- W3034347740 hasRelatedWork W2942279240 @default.
- W3034347740 hasRelatedWork W2997775669 @default.
- W3034347740 hasRelatedWork W3034654929 @default.
- W3034347740 hasRelatedWork W3100246128 @default.
- W3034347740 hasRelatedWork W3115935590 @default.
- W3034347740 hasRelatedWork W3141782545 @default.
- W3034347740 hasRelatedWork W3146537930 @default.
- W3034347740 hasRelatedWork W3153852854 @default.
- W3034347740 hasRelatedWork W3171242759 @default.
- W3034347740 hasRelatedWork W3194799641 @default.
- W3034347740 hasRelatedWork W1531652497 @default.
- W3034347740 hasRelatedWork W2532194843 @default.
- W3034347740 hasVolume "12" @default.
- W3034347740 isParatext "false" @default.
- W3034347740 isRetracted "false" @default.
- W3034347740 magId "3034347740" @default.
- W3034347740 workType "article" @default.