Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034374808> ?p ?o ?g. }
- W3034374808 endingPage "114222" @default.
- W3034374808 startingPage "114222" @default.
- W3034374808 abstract "Abstract Recent synthesis of thin films of boron monophosphide (BP) motivates us to report herewith the lattice thermal conductivity calculated in nanoscale boron pnictides. The lattice thermal conductivity in BX (X = P, As, Sb) monolayers are calculated to be 51.3, 20.7 and 5.4 Wm−1K−1 respectively at 300 K. The ultra-low lattice thermal conductivity in BSb, which is comparable to that in SnSe, is attributed to low elastic and bond stiffness, low Debye temperature, small group velocity and large mode Gruneisen parameter near zone center. Phonon group velocities in BSb are comparable to that in SnSe and Bi2Te3. Up to 50% reduction in lattice thermal conductivity is noticed at 300 K upon shortening the phonon mean free path, which is realizable, e.g., in 1D nanoribbons, or via defects, vacancies, nanoengineering, etc. A comparative study based on different models to compute the lattice thermal conductivity will provide useful insights into the experimentally measured ones. The widest ever phononic gap (436 & 438 cm−1) is found in BAs and BSb monolayers, where the transverse and longitudinal optical phonons meet the criterion for the prevention of Klemens decay and hence, they can be gainfully exploited in hot-carrier solar cells. BX (X = P, As, Sb) monolayers show a direct bandgap and piezoelectricity. Nanoscale boron pnictides are promising materials in futuristic thermoelectrics, bolometers, third-generation solar cells and nanopiezotronics." @default.
- W3034374808 created "2020-06-19" @default.
- W3034374808 creator A5036953516 @default.
- W3034374808 creator A5047939496 @default.
- W3034374808 creator A5052092090 @default.
- W3034374808 creator A5062232295 @default.
- W3034374808 creator A5070017120 @default.
- W3034374808 creator A5070411936 @default.
- W3034374808 date "2020-10-01" @default.
- W3034374808 modified "2023-09-30" @default.
- W3034374808 title "Ultra-low thermal conductivity and super-slow hot-carrier thermalization induced by a huge phononic gap in multifunctional nanoscale boron pnictides" @default.
- W3034374808 cites W1533150733 @default.
- W3034374808 cites W1550186202 @default.
- W3034374808 cites W1623038549 @default.
- W3034374808 cites W1754932684 @default.
- W3034374808 cites W1965904439 @default.
- W3034374808 cites W1965905995 @default.
- W3034374808 cites W1970127494 @default.
- W3034374808 cites W1979544533 @default.
- W3034374808 cites W1981368803 @default.
- W3034374808 cites W1989372505 @default.
- W3034374808 cites W1993447019 @default.
- W3034374808 cites W1997166311 @default.
- W3034374808 cites W2007395042 @default.
- W3034374808 cites W2012111359 @default.
- W3034374808 cites W2014897029 @default.
- W3034374808 cites W2015151439 @default.
- W3034374808 cites W2023978863 @default.
- W3034374808 cites W2030906676 @default.
- W3034374808 cites W2042428855 @default.
- W3034374808 cites W2067328332 @default.
- W3034374808 cites W2069967058 @default.
- W3034374808 cites W2071509666 @default.
- W3034374808 cites W2083222334 @default.
- W3034374808 cites W2085999545 @default.
- W3034374808 cites W2090077753 @default.
- W3034374808 cites W2110830581 @default.
- W3034374808 cites W2123756409 @default.
- W3034374808 cites W2151418495 @default.
- W3034374808 cites W2166057940 @default.
- W3034374808 cites W2208121677 @default.
- W3034374808 cites W2214714839 @default.
- W3034374808 cites W2260288406 @default.
- W3034374808 cites W2329225300 @default.
- W3034374808 cites W2329244139 @default.
- W3034374808 cites W2335373519 @default.
- W3034374808 cites W2416108250 @default.
- W3034374808 cites W2421361261 @default.
- W3034374808 cites W2503505126 @default.
- W3034374808 cites W2529559526 @default.
- W3034374808 cites W2531662263 @default.
- W3034374808 cites W2532163109 @default.
- W3034374808 cites W2560540751 @default.
- W3034374808 cites W2560650964 @default.
- W3034374808 cites W2563583614 @default.
- W3034374808 cites W2595397674 @default.
- W3034374808 cites W2598159493 @default.
- W3034374808 cites W2734891126 @default.
- W3034374808 cites W2736261208 @default.
- W3034374808 cites W2738574361 @default.
- W3034374808 cites W2744143941 @default.
- W3034374808 cites W2763142181 @default.
- W3034374808 cites W2766713554 @default.
- W3034374808 cites W2769273697 @default.
- W3034374808 cites W2777603135 @default.
- W3034374808 cites W2796017508 @default.
- W3034374808 cites W2802044307 @default.
- W3034374808 cites W2802704745 @default.
- W3034374808 cites W2888579631 @default.
- W3034374808 cites W2897798156 @default.
- W3034374808 cites W2899125903 @default.
- W3034374808 cites W2899327258 @default.
- W3034374808 cites W2905961118 @default.
- W3034374808 cites W2914771683 @default.
- W3034374808 cites W2923031210 @default.
- W3034374808 cites W2964980676 @default.
- W3034374808 cites W2967730661 @default.
- W3034374808 cites W2969225965 @default.
- W3034374808 cites W2973318615 @default.
- W3034374808 cites W2980477232 @default.
- W3034374808 cites W2995466395 @default.
- W3034374808 cites W3013467425 @default.
- W3034374808 cites W3018250416 @default.
- W3034374808 cites W3103297736 @default.
- W3034374808 cites W3105183473 @default.
- W3034374808 cites W3105719534 @default.
- W3034374808 cites W832976576 @default.
- W3034374808 doi "https://doi.org/10.1016/j.physe.2020.114222" @default.
- W3034374808 hasPublicationYear "2020" @default.
- W3034374808 type Work @default.
- W3034374808 sameAs 3034374808 @default.
- W3034374808 citedByCount "20" @default.
- W3034374808 countsByYear W30343748082020 @default.
- W3034374808 countsByYear W30343748082021 @default.
- W3034374808 countsByYear W30343748082022 @default.
- W3034374808 countsByYear W30343748082023 @default.
- W3034374808 crossrefType "journal-article" @default.
- W3034374808 hasAuthorship W3034374808A5036953516 @default.