Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034376952> ?p ?o ?g. }
- W3034376952 endingPage "6054" @default.
- W3034376952 startingPage "6046" @default.
- W3034376952 abstract "The degree of crystallinity of a polymer is a critical parameter that controls a variety of polymer properties. A high degree of crystallinity is associated with excellent mechanical properties crucial for high-performing applications like composites. Low crystallinity promotes ion and gas mobility critical for battery and membrane applications. Experimental determination of the crystallinity for new polymers is time and cost intensive. A data-driven machine learning-based method capable of rapidly predicting the crystallinity could counter these disadvantages and be used to screen polymers for a myriad of applications in a fast, inexpensive fashion. In this work, we developed the first-of-its-kind, data-driven machine learning model to predict the polymer crystallinity trained on experimental data and theoretical group contribution methods. Since polymer data under consistent processing conditions are unavailable, we tackled process variability by using the most-likely polymer values which we refer to as the polymer's tendency to crystallize. Experimental data for polymers' tendency to crystallize is limited by number and diversity, and to tackle this, we augmented experimentation-based data with data using group contribution methods. Therefore, this work utilized two data sets, viz., a high-fidelity, experimental data set for 107 polymers and a more diverse, less accurate low-fidelity data set for 429 polymers which used group contribution methods. We used a multifidelity information fusion strategy to utilize all the information captured in the low-fidelity data set while still predicting at the high-fidelity accuracy. Although this model inherently assumed typical processing conditions and estimated the most-likely percent crystallinity value, it can help in the estimation of a polymer's tendency to crystallize in a far more cost-effective and efficient manner." @default.
- W3034376952 created "2020-06-19" @default.
- W3034376952 creator A5003850818 @default.
- W3034376952 creator A5018939520 @default.
- W3034376952 creator A5037217491 @default.
- W3034376952 creator A5047282717 @default.
- W3034376952 creator A5073851738 @default.
- W3034376952 creator A5085186166 @default.
- W3034376952 date "2020-06-15" @default.
- W3034376952 modified "2023-09-29" @default.
- W3034376952 title "Predicting Crystallization Tendency of Polymers Using Multifidelity Information Fusion and Machine Learning" @default.
- W3034376952 cites W1502922572 @default.
- W3034376952 cites W1605697955 @default.
- W3034376952 cites W1672997411 @default.
- W3034376952 cites W1890788316 @default.
- W3034376952 cites W1989050018 @default.
- W3034376952 cites W1991281409 @default.
- W3034376952 cites W2012787986 @default.
- W3034376952 cites W2021005344 @default.
- W3034376952 cites W2062107104 @default.
- W3034376952 cites W2065578653 @default.
- W3034376952 cites W2092368765 @default.
- W3034376952 cites W2093005782 @default.
- W3034376952 cites W2105196613 @default.
- W3034376952 cites W2135766908 @default.
- W3034376952 cites W2135847156 @default.
- W3034376952 cites W2145508015 @default.
- W3034376952 cites W2163779749 @default.
- W3034376952 cites W2493698532 @default.
- W3034376952 cites W2497133677 @default.
- W3034376952 cites W2563751252 @default.
- W3034376952 cites W2581957420 @default.
- W3034376952 cites W2766362701 @default.
- W3034376952 cites W2805882901 @default.
- W3034376952 cites W2883528235 @default.
- W3034376952 cites W2902430855 @default.
- W3034376952 cites W2925202119 @default.
- W3034376952 cites W2935741399 @default.
- W3034376952 cites W2947486803 @default.
- W3034376952 cites W2963784900 @default.
- W3034376952 cites W2963807552 @default.
- W3034376952 cites W2976102057 @default.
- W3034376952 cites W2978032524 @default.
- W3034376952 cites W3022711947 @default.
- W3034376952 cites W4237501207 @default.
- W3034376952 cites W4238219156 @default.
- W3034376952 doi "https://doi.org/10.1021/acs.jpcb.0c01865" @default.
- W3034376952 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32539396" @default.
- W3034376952 hasPublicationYear "2020" @default.
- W3034376952 type Work @default.
- W3034376952 sameAs 3034376952 @default.
- W3034376952 citedByCount "31" @default.
- W3034376952 countsByYear W30343769522020 @default.
- W3034376952 countsByYear W30343769522021 @default.
- W3034376952 countsByYear W30343769522022 @default.
- W3034376952 countsByYear W30343769522023 @default.
- W3034376952 crossrefType "journal-article" @default.
- W3034376952 hasAuthorship W3034376952A5003850818 @default.
- W3034376952 hasAuthorship W3034376952A5018939520 @default.
- W3034376952 hasAuthorship W3034376952A5037217491 @default.
- W3034376952 hasAuthorship W3034376952A5047282717 @default.
- W3034376952 hasAuthorship W3034376952A5073851738 @default.
- W3034376952 hasAuthorship W3034376952A5085186166 @default.
- W3034376952 hasConcept C110530677 @default.
- W3034376952 hasConcept C127413603 @default.
- W3034376952 hasConcept C138885662 @default.
- W3034376952 hasConcept C154945302 @default.
- W3034376952 hasConcept C158525013 @default.
- W3034376952 hasConcept C159985019 @default.
- W3034376952 hasConcept C192562407 @default.
- W3034376952 hasConcept C203036418 @default.
- W3034376952 hasConcept C2982962833 @default.
- W3034376952 hasConcept C41008148 @default.
- W3034376952 hasConcept C41895202 @default.
- W3034376952 hasConcept C42360764 @default.
- W3034376952 hasConcept C521977710 @default.
- W3034376952 hasConceptScore W3034376952C110530677 @default.
- W3034376952 hasConceptScore W3034376952C127413603 @default.
- W3034376952 hasConceptScore W3034376952C138885662 @default.
- W3034376952 hasConceptScore W3034376952C154945302 @default.
- W3034376952 hasConceptScore W3034376952C158525013 @default.
- W3034376952 hasConceptScore W3034376952C159985019 @default.
- W3034376952 hasConceptScore W3034376952C192562407 @default.
- W3034376952 hasConceptScore W3034376952C203036418 @default.
- W3034376952 hasConceptScore W3034376952C2982962833 @default.
- W3034376952 hasConceptScore W3034376952C41008148 @default.
- W3034376952 hasConceptScore W3034376952C41895202 @default.
- W3034376952 hasConceptScore W3034376952C42360764 @default.
- W3034376952 hasConceptScore W3034376952C521977710 @default.
- W3034376952 hasIssue "28" @default.
- W3034376952 hasLocation W30343769521 @default.
- W3034376952 hasOpenAccess W3034376952 @default.
- W3034376952 hasPrimaryLocation W30343769521 @default.
- W3034376952 hasRelatedWork W2032042196 @default.
- W3034376952 hasRelatedWork W2035685220 @default.
- W3034376952 hasRelatedWork W2059299020 @default.
- W3034376952 hasRelatedWork W2375008649 @default.
- W3034376952 hasRelatedWork W2923352262 @default.