Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034422010> ?p ?o ?g. }
- W3034422010 endingPage "1822" @default.
- W3034422010 startingPage "1808" @default.
- W3034422010 abstract "Due to the tradeoff between spatial and temporal resolutions commonly encountered in remote sensing, no single satellite sensor can provide fine spatial resolution land surface temperature (LST) products with frequent coverage. This situation greatly limits applications that require LST data with fine spatiotemporal resolution. Here, a deep learning-based spatiotemporal temperature fusion network (STTFN) method for the generation of fine spatiotemporal resolution LST products is proposed. In STTFN, a multiscale fusion convolutional neural network is employed to build the complex nonlinear relationship between input and output LSTs. Thus, unlike other LST spatiotemporal fusion approaches, STTFN is able to form the potentially complicated relationships through the use of training data without manually designed mathematical rules making it is more flexible and intelligent than other methods. In addition, two target fine spatial resolution LST images are predicted and then integrated by a spatiotemporal-consistency (STC)-weighting function to take advantage of STC of LST data. A set of analyses using two real LST data sets obtained from Landsat and moderate resolution imaging spectroradiometer (MODIS) were undertaken to evaluate the ability of STTFN to generate fine spatiotemporal resolution LST products. The results show that, compared with three classic fusion methods [the enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM), the spatiotemporal integrated temperature fusion model (STITFM), and the two-stream convolutional neural network for spatiotemporal image fusion (StfNet)], the proposed network produced the most accurate outputs [average root mean square error (RMSE) <; 1.40 °C and average structural similarity (SSIM) > 0.971]." @default.
- W3034422010 created "2020-06-19" @default.
- W3034422010 creator A5011760791 @default.
- W3034422010 creator A5012444471 @default.
- W3034422010 creator A5021827773 @default.
- W3034422010 creator A5024564691 @default.
- W3034422010 creator A5053923666 @default.
- W3034422010 creator A5065644909 @default.
- W3034422010 creator A5088010841 @default.
- W3034422010 date "2021-02-01" @default.
- W3034422010 modified "2023-10-16" @default.
- W3034422010 title "Spatiotemporal Fusion of Land Surface Temperature Based on a Convolutional Neural Network" @default.
- W3034422010 cites W1966928556 @default.
- W3034422010 cites W2006273284 @default.
- W3034422010 cites W2016044589 @default.
- W3034422010 cites W2023306858 @default.
- W3034422010 cites W2027756597 @default.
- W3034422010 cites W2031596845 @default.
- W3034422010 cites W2040638734 @default.
- W3034422010 cites W2046033161 @default.
- W3034422010 cites W2055007440 @default.
- W3034422010 cites W2056811372 @default.
- W3034422010 cites W2058399474 @default.
- W3034422010 cites W2058602417 @default.
- W3034422010 cites W2067542652 @default.
- W3034422010 cites W2076295760 @default.
- W3034422010 cites W2078383089 @default.
- W3034422010 cites W2088603520 @default.
- W3034422010 cites W2116327754 @default.
- W3034422010 cites W2119204870 @default.
- W3034422010 cites W2121025662 @default.
- W3034422010 cites W2128611232 @default.
- W3034422010 cites W2159175457 @default.
- W3034422010 cites W2200055847 @default.
- W3034422010 cites W2200350976 @default.
- W3034422010 cites W2292659702 @default.
- W3034422010 cites W2507473831 @default.
- W3034422010 cites W2513213365 @default.
- W3034422010 cites W2552805558 @default.
- W3034422010 cites W2602830938 @default.
- W3034422010 cites W2614563231 @default.
- W3034422010 cites W2749751926 @default.
- W3034422010 cites W2765110247 @default.
- W3034422010 cites W2793445582 @default.
- W3034422010 cites W2794423204 @default.
- W3034422010 cites W2795018073 @default.
- W3034422010 cites W2801088900 @default.
- W3034422010 cites W2843468165 @default.
- W3034422010 cites W2887166489 @default.
- W3034422010 cites W2913765718 @default.
- W3034422010 cites W2914267938 @default.
- W3034422010 cites W2915231377 @default.
- W3034422010 cites W2916548083 @default.
- W3034422010 cites W2919424886 @default.
- W3034422010 cites W2934933190 @default.
- W3034422010 cites W2935933488 @default.
- W3034422010 cites W2939570633 @default.
- W3034422010 cites W2963372104 @default.
- W3034422010 cites W2964101377 @default.
- W3034422010 cites W2984926917 @default.
- W3034422010 cites W2990083984 @default.
- W3034422010 cites W3008439211 @default.
- W3034422010 cites W3011782621 @default.
- W3034422010 doi "https://doi.org/10.1109/tgrs.2020.2999943" @default.
- W3034422010 hasPublicationYear "2021" @default.
- W3034422010 type Work @default.
- W3034422010 sameAs 3034422010 @default.
- W3034422010 citedByCount "49" @default.
- W3034422010 countsByYear W30344220102020 @default.
- W3034422010 countsByYear W30344220102021 @default.
- W3034422010 countsByYear W30344220102022 @default.
- W3034422010 countsByYear W30344220102023 @default.
- W3034422010 crossrefType "journal-article" @default.
- W3034422010 hasAuthorship W3034422010A5011760791 @default.
- W3034422010 hasAuthorship W3034422010A5012444471 @default.
- W3034422010 hasAuthorship W3034422010A5021827773 @default.
- W3034422010 hasAuthorship W3034422010A5024564691 @default.
- W3034422010 hasAuthorship W3034422010A5053923666 @default.
- W3034422010 hasAuthorship W3034422010A5065644909 @default.
- W3034422010 hasAuthorship W3034422010A5088010841 @default.
- W3034422010 hasBestOaLocation W30344220102 @default.
- W3034422010 hasConcept C105795698 @default.
- W3034422010 hasConcept C119666444 @default.
- W3034422010 hasConcept C121332964 @default.
- W3034422010 hasConcept C126838900 @default.
- W3034422010 hasConcept C127413603 @default.
- W3034422010 hasConcept C138885662 @default.
- W3034422010 hasConcept C139945424 @default.
- W3034422010 hasConcept C146978453 @default.
- W3034422010 hasConcept C153180895 @default.
- W3034422010 hasConcept C154945302 @default.
- W3034422010 hasConcept C158525013 @default.
- W3034422010 hasConcept C183115368 @default.
- W3034422010 hasConcept C19269812 @default.
- W3034422010 hasConcept C205372480 @default.
- W3034422010 hasConcept C205649164 @default.
- W3034422010 hasConcept C33923547 @default.
- W3034422010 hasConcept C33954974 @default.