Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034542339> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3034542339 endingPage "T714" @default.
- W3034542339 startingPage "T701" @default.
- W3034542339 abstract "Mapping facies variations is a fundamental element in the study of reservoir characteristics. From identifying a pay zone to estimating the reservoir capacity, a hydrocarbon field’s development plan depends to a great extent on a reliable model of lithofacies and fluid content variations throughout the reservoir. The starting point usually is creating 1D facies models based on core samples and drilling reports at each well location. Sparse well locations and the inherent heterogeneity in the reservoir properties make it essential to incorporate the resultant 1D models into a 3D model of facies distribution that includes information about the probability of their occurrence. New techniques using machine learning (ML) to build 3D lithofluid facies (LFF) models can incorporate the prediction of different lithofacies regarding their potential hydrocarbon content, along with the uncertainties of the prediction. We have applied a fuzzy inference system, as an expert-oriented approach, and two separate ML algorithms, to different seismic and elastic attributes to model the LFF classes within the Heidrun oil and gas field. The results, compared with the test wells, show that ML methods could successfully predict the distribution of gas and oil sands within the field, in very good agreement with the known fluid contact intervals. Moreover, the predictions of shale and brine sands vary depending on the method but also are consistent with our knowledge of this field. Comparison between the results confirms the higher reliability of ML methods. Importantly, ML methods provide a better way of investigating and quantifying the uncertainty of the predictions. Implementing ML algorithms in reservoir characterization reduces the risk of drilling unnecessary wells due to false discoveries and can lead to more economical development of hydrocarbon resources." @default.
- W3034542339 created "2020-06-19" @default.
- W3034542339 creator A5014356134 @default.
- W3034542339 creator A5038033751 @default.
- W3034542339 creator A5082756392 @default.
- W3034542339 date "2020-11-01" @default.
- W3034542339 modified "2023-09-23" @default.
- W3034542339 title "Creating probabilistic 3D models of lithofluid facies using machine-learning algorithms" @default.
- W3034542339 cites W1910501430 @default.
- W3034542339 cites W1964168965 @default.
- W3034542339 cites W1964251492 @default.
- W3034542339 cites W1992176519 @default.
- W3034542339 cites W2032762394 @default.
- W3034542339 cites W2066991880 @default.
- W3034542339 cites W2097035656 @default.
- W3034542339 cites W2601307685 @default.
- W3034542339 cites W2602116407 @default.
- W3034542339 cites W2766575453 @default.
- W3034542339 cites W2807914764 @default.
- W3034542339 cites W2891255706 @default.
- W3034542339 cites W2911964244 @default.
- W3034542339 cites W2927092743 @default.
- W3034542339 cites W2931285398 @default.
- W3034542339 cites W2993759822 @default.
- W3034542339 cites W4211007335 @default.
- W3034542339 cites W4212883601 @default.
- W3034542339 cites W4249972823 @default.
- W3034542339 doi "https://doi.org/10.1190/int-2019-0249.1" @default.
- W3034542339 hasPublicationYear "2020" @default.
- W3034542339 type Work @default.
- W3034542339 sameAs 3034542339 @default.
- W3034542339 citedByCount "3" @default.
- W3034542339 countsByYear W30345423392021 @default.
- W3034542339 countsByYear W30345423392022 @default.
- W3034542339 countsByYear W30345423392023 @default.
- W3034542339 crossrefType "journal-article" @default.
- W3034542339 hasAuthorship W3034542339A5014356134 @default.
- W3034542339 hasAuthorship W3034542339A5038033751 @default.
- W3034542339 hasAuthorship W3034542339A5082756392 @default.
- W3034542339 hasConcept C109007969 @default.
- W3034542339 hasConcept C11413529 @default.
- W3034542339 hasConcept C114793014 @default.
- W3034542339 hasConcept C119857082 @default.
- W3034542339 hasConcept C127313418 @default.
- W3034542339 hasConcept C14641988 @default.
- W3034542339 hasConcept C146588470 @default.
- W3034542339 hasConcept C154945302 @default.
- W3034542339 hasConcept C202444582 @default.
- W3034542339 hasConcept C33923547 @default.
- W3034542339 hasConcept C41008148 @default.
- W3034542339 hasConcept C58166 @default.
- W3034542339 hasConcept C78762247 @default.
- W3034542339 hasConcept C9652623 @default.
- W3034542339 hasConceptScore W3034542339C109007969 @default.
- W3034542339 hasConceptScore W3034542339C11413529 @default.
- W3034542339 hasConceptScore W3034542339C114793014 @default.
- W3034542339 hasConceptScore W3034542339C119857082 @default.
- W3034542339 hasConceptScore W3034542339C127313418 @default.
- W3034542339 hasConceptScore W3034542339C14641988 @default.
- W3034542339 hasConceptScore W3034542339C146588470 @default.
- W3034542339 hasConceptScore W3034542339C154945302 @default.
- W3034542339 hasConceptScore W3034542339C202444582 @default.
- W3034542339 hasConceptScore W3034542339C33923547 @default.
- W3034542339 hasConceptScore W3034542339C41008148 @default.
- W3034542339 hasConceptScore W3034542339C58166 @default.
- W3034542339 hasConceptScore W3034542339C78762247 @default.
- W3034542339 hasConceptScore W3034542339C9652623 @default.
- W3034542339 hasIssue "4" @default.
- W3034542339 hasLocation W30345423391 @default.
- W3034542339 hasOpenAccess W3034542339 @default.
- W3034542339 hasPrimaryLocation W30345423391 @default.
- W3034542339 hasRelatedWork W2107825821 @default.
- W3034542339 hasRelatedWork W2152825775 @default.
- W3034542339 hasRelatedWork W2157891449 @default.
- W3034542339 hasRelatedWork W2318626169 @default.
- W3034542339 hasRelatedWork W2321065130 @default.
- W3034542339 hasRelatedWork W2378256087 @default.
- W3034542339 hasRelatedWork W2381179146 @default.
- W3034542339 hasRelatedWork W2383818597 @default.
- W3034542339 hasRelatedWork W4288754364 @default.
- W3034542339 hasRelatedWork W4308734192 @default.
- W3034542339 hasVolume "8" @default.
- W3034542339 isParatext "false" @default.
- W3034542339 isRetracted "false" @default.
- W3034542339 magId "3034542339" @default.
- W3034542339 workType "article" @default.