Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034546258> ?p ?o ?g. }
- W3034546258 endingPage "11528" @default.
- W3034546258 startingPage "11513" @default.
- W3034546258 abstract "Viperin plays an important and multifaceted role in the innate immune response to viral infection. Viperin is also notable as one of very few radical SAM–dependent enzymes present in higher animals; however, the enzyme appears broadly conserved across all kingdoms of life, which suggests that it represents an ancient defense mechanism against viral infections. Although viperin was discovered some 20 years ago, only recently was the enzyme's structure determined and its catalytic activity elucidated. The enzyme converts CTP to 3′-deoxy-3′,4′-didehydro-CTP, which functions as novel chain-terminating antiviral nucleotide when misincorporated by viral RNA-dependent RNA polymerases. Moreover, in higher animals, viperin interacts with numerous other host and viral proteins, and it is apparent that this complex network of interactions constitutes another important aspect of the protein's antiviral activity. An emerging theme is that viperin appears to facilitate ubiquitin-dependent proteasomal degradation of some of the proteins it interacts with. Viperin-targeted protein degradation contributes to the antiviral response either by down-regulating various metabolic pathways important for viral replication or by directly targeting viral proteins for degradation. Here, we review recent advances in our understanding of the structure and catalytic activity of viperin, together with studies investigating the interactions between viperin and its target proteins. These studies have provided detailed insights into the biochemical processes underpinning this unusual enzyme's wide-ranging antiviral activity. We also highlight recent intriguing reports that implicate a broader role for viperin in regulating nonpathological cellular processes, including thermogenesis and protein secretion. Viperin plays an important and multifaceted role in the innate immune response to viral infection. Viperin is also notable as one of very few radical SAM–dependent enzymes present in higher animals; however, the enzyme appears broadly conserved across all kingdoms of life, which suggests that it represents an ancient defense mechanism against viral infections. Although viperin was discovered some 20 years ago, only recently was the enzyme's structure determined and its catalytic activity elucidated. The enzyme converts CTP to 3′-deoxy-3′,4′-didehydro-CTP, which functions as novel chain-terminating antiviral nucleotide when misincorporated by viral RNA-dependent RNA polymerases. Moreover, in higher animals, viperin interacts with numerous other host and viral proteins, and it is apparent that this complex network of interactions constitutes another important aspect of the protein's antiviral activity. An emerging theme is that viperin appears to facilitate ubiquitin-dependent proteasomal degradation of some of the proteins it interacts with. Viperin-targeted protein degradation contributes to the antiviral response either by down-regulating various metabolic pathways important for viral replication or by directly targeting viral proteins for degradation. Here, we review recent advances in our understanding of the structure and catalytic activity of viperin, together with studies investigating the interactions between viperin and its target proteins. These studies have provided detailed insights into the biochemical processes underpinning this unusual enzyme's wide-ranging antiviral activity. We also highlight recent intriguing reports that implicate a broader role for viperin in regulating nonpathological cellular processes, including thermogenesis and protein secretion. Viperin (virus-inhibitory protein, endoplasmic reticulum–associated, interferon-inducible) is an interferon-stimulated gene (ISG) product that restricts the infectivity of a wide range of viruses (1Seo J.-Y. Yaneva R. Cresswell P. Viperin: a multifunctional, interferon-inducible protein that regulates virus replication.Cell Host Microbe. 2011; 10 (22177558): 534-53910.1016/j.chom.2011.11.004Abstract Full Text Full Text PDF PubMed Scopus (120) Google Scholar, 2Helbig K.J. Beard M.R. The role of viperin in the innate antiviral response.J. Mol. Biol. 2014; 426 (24157441): 1210-121910.1016/j.jmb.2013.10.019Crossref PubMed Scopus (120) Google Scholar, 3Lindqvist R. Överby A.K. The role of viperin in antiflavivirus Responses.DNA Cell Biol. 2018; 37 (30059238): 725-73010.1089/dna.2018.4328Crossref PubMed Scopus (8) Google Scholar, 4Mattijssen S. Pruijn G.J. Viperin, a key player in the antiviral response.Microbes Infect. 2012; 14 (22182524): 419-42610.1016/j.micinf.2011.11.015Crossref PubMed Scopus (63) Google Scholar). The enzyme was first identified in 1997 as one of several genes up-regulated in response to infection by human cytomegalovirus (HCMV) and was therefore initially referred to as cig5 (cytomegalovirus-inducible gene 5) (5Zhu H. Cong J.-P. Shenk T. Use of differential display analysis to assess the effect of human cytomegalovirus infection on the accumulation of cellular RNAs: induction of interferon-responsive RNAs.Proc. Natl. Acad. Sci. U. S. A. 1997; 94 (9391139): 13985-1399010.1073/pnas.94.25.13985Crossref PubMed Scopus (250) Google Scholar). Early work also identified the gene as up-regulated in viral infections of fish (6Boudinot P. Massin P. Blanco M. Riffault S. Benmansour A. vig-1, a new fish gene induced by the rhabdovirus glycoprotein, has a virus-induced homologue in humans and shares conserved motifs with the MoaA family.J. Virol. 1999; 73 (9971762): 1846-185210.1128/JVI.73.3.1846-1852.1999Crossref PubMed Google Scholar). In 2001, the gene was isolated from HCMV-infected fibroblasts (7Chin K.C. Cresswell P. Viperin (cig5), an IFN-inducible antiviral protein directly induced by human cytomegalovirus.Proc. Natl. Acad. Sci. U. S. A. 2001; 98 (11752458): 15125-1513010.1073/pnas.011593298Crossref PubMed Scopus (287) Google Scholar). When stably expressed, viperin was shown to restrict HCMV replication and abolish the expression of glycoproteins from the viral capsid. Later it became apparent that viperin is identical to the radical SAM domain–containing protein 2 (RSAD2) located on chromosome 2 of the human genome (7Chin K.C. Cresswell P. Viperin (cig5), an IFN-inducible antiviral protein directly induced by human cytomegalovirus.Proc. Natl. Acad. Sci. U. S. A. 2001; 98 (11752458): 15125-1513010.1073/pnas.011593298Crossref PubMed Scopus (287) Google Scholar). Subsequently, this highly species-conserved protein has been identified in the genomes of various mammals, fish, and reptiles. Viperin is expressed at low basal levels in most cell types but is strongly induced by numerous viruses (6Boudinot P. Massin P. Blanco M. Riffault S. Benmansour A. vig-1, a new fish gene induced by the rhabdovirus glycoprotein, has a virus-induced homologue in humans and shares conserved motifs with the MoaA family.J. Virol. 1999; 73 (9971762): 1846-185210.1128/JVI.73.3.1846-1852.1999Crossref PubMed Google Scholar, 8Fitzgerald K.A. The interferon inducible gene: viperin.J. Interferon Cytokine Res. 2011; 31 (21142818): 131-13510.1089/jir.2010.0127Crossref PubMed Scopus (108) Google Scholar, 9Helbig K.J. Lau D.T.Y. Semendric L. Harley H.A.J. Beard M.R. Analysis of ISG expression in chronic hepatitis C identifies viperin as a potential antiviral effector.Hepatology. 2005; 42 (16108059): 702-71010.1002/hep.20844Crossref PubMed Scopus (193) Google Scholar, 10Severa M. Coccia E.M. Fitzgerald K.A. Toll-like receptor-dependent and -independent viperin gene expression and counter-regulation by PRDI-binding factor-1/BLIMP1.J. Biol. Chem. 2006; 281 (16849320): 26188-2619510.1074/jbc.M604516200Abstract Full Text Full Text PDF PubMed Scopus (91) Google Scholar). Table 1 summarizes the different viruses that viperin has been found to restrict and its mode of action, where known. Among the viruses documented to induce viperin are DNA viruses such as cytomegalovirus (CMV) (7Chin K.C. Cresswell P. Viperin (cig5), an IFN-inducible antiviral protein directly induced by human cytomegalovirus.Proc. Natl. Acad. Sci. U. S. A. 2001; 98 (11752458): 15125-1513010.1073/pnas.011593298Crossref PubMed Scopus (287) Google Scholar, 48Seo J.-Y. Cresswell P. Viperin regulates cellular lipid metabolism during human cytomegalovirus infection.PLoS Pathog. 2013; 9 (23935494): e100349710.1371/journal.ppat.1003497Crossref PubMed Scopus (62) Google Scholar, 49Seo J.-Y. Yaneva R. Hinson E.R. Cresswell P. Human cytomegalovirus directly induces the antiviral protein viperin to enhance infectivity.Science. 2011; 332 (21527675): 1093-109710.1126/science.1202007Crossref PubMed Scopus (127) Google Scholar) and retroviruses such as HIV-1 (45Nasr N. Maddocks S. Turville S.G. Harman A.N. Woolger N. Helbig K.J. Wilkinson J. Bye C.R. Wright T.K. Rambukwelle D. Donaghy H. Beard M.R. Cunningham A.L. HIV-1 infection of human macrophages directly induces viperin which inhibits viral production.Blood. 2012; 120 (22677126): 778-78810.1182/blood-2012-01-407395Crossref PubMed Scopus (127) Google Scholar). Viperin also restricts many positive-strand RNA viruses such as flaviviruses, including hepatitis C virus (HCV) (9Helbig K.J. Lau D.T.Y. Semendric L. Harley H.A.J. Beard M.R. Analysis of ISG expression in chronic hepatitis C identifies viperin as a potential antiviral effector.Hepatology. 2005; 42 (16108059): 702-71010.1002/hep.20844Crossref PubMed Scopus (193) Google Scholar, 12Helbig K.J. Eyre N.S. Yip E. Narayana S. Li K. Fiches G. McCartney E.M. Jangra R.K. Lemon S.M. Beard M.R. The antiviral protein viperin inhibits hepatitis C virus replication via interaction with nonstructural protein 5A.Hepatology. 2011; 54 (22045669): 1506-151710.1002/hep.24542Crossref PubMed Scopus (136) Google Scholar, 13Wang S. Wu X. Pan T. Song W. Wang Y. Zhang F. Yuan Z. Viperin inhibits hepatitis C virus replication by interfering with binding of NS5A to host protein hVAP-33.J. Gen. Virol. 2012; 93 (21957124): 83-9210.1099/vir.0.033860-0Crossref PubMed Scopus (77) Google Scholar), West Nile virus (15Jiang D. Weidner J.M. Qing M. Pan X.-B. Guo H. Xu C. Zhang X. Birk A. Chang J. Shi P.-Y. Block T.M. Guo J.-T. Identification of five interferon-induced cellular proteins that inhibit West Nile virus and dengue virus infections.J. Virol. 2010; 84 (20534863): 8332-834110.1128/JVI.02199-09Crossref PubMed Scopus (233) Google Scholar), Zika virus (18Panayiotou C. Lindqvist R. Kurhade C. Vonderstein K. Pasto J. Edlund K. Upadhyay A.S. Överby A.K. Viperin restricts Zika virus and tick-borne encephalitis virus replication by targeting NS3 for proteasomal degradation.J. Virol. 2018; 92 (29321318): e02054-e0211710.1128/jvi.02054-17PubMed Google Scholar, 21Van der Hoek K.H. Eyre N.S. Shue B. Khantisitthiporn O. Glab-Ampi K. Carr J.M. Gartner M.J. Jolly L.A. Thomas P.Q. Adikusuma F. Jankovic-Karasoulos T. Roberts C.T. Helbig K.J. Beard M.R. Viperin is an important host restriction factor in control of Zika virus infection.Sci. Rep. 2017; 7 (28667332): 447510.1038/s41598-017-04138-1Crossref PubMed Scopus (53) Google Scholar, 22Vanwalscappel B. Tada T. Landau N.R. Toll-like receptor agonist R848 blocks Zika virus replication by inducing the antiviral protein viperin.Virology. 2018; 522 (30036788): 199-20810.1016/j.virol.2018.07.014Crossref PubMed Scopus (22) Google Scholar), and dengue fever virus (15Jiang D. Weidner J.M. Qing M. Pan X.-B. Guo H. Xu C. Zhang X. Birk A. Chang J. Shi P.-Y. Block T.M. Guo J.-T. Identification of five interferon-induced cellular proteins that inhibit West Nile virus and dengue virus infections.J. Virol. 2010; 84 (20534863): 8332-834110.1128/JVI.02199-09Crossref PubMed Scopus (233) Google Scholar, 16Helbig K.J. Carr J.M. Calvert J.K. Wati S. Clarke J.N. Eyre N.S. Narayana S.K. Fiches G.N. McCartney E.M. Beard M.R. Viperin is induced following dengue virus type-2 (DENV-2) infection and has anti-viral actions requiring the C-terminal end of viperin.PLoS Negl. Trop. Dis. 2013; 7 (23638199): e217810.1371/journal.pntd.0002178Crossref PubMed Scopus (93) Google Scholar), and alphaviruses that cause Sindbis (25Zhang Y. Burke C.W. Ryman K.D. Klimstra W.B. Identification and characterization of interferon-induced proteins that inhibit alphavirus replication.J. Virol. 2007; 81 (17686841): 11246-1125510.1128/JVI.01282-07Crossref PubMed Scopus (176) Google Scholar, 26Chan Y.-L. Chang T.-H. Liao C.-L. Lin Y.-L. The cellular antiviral protein viperin is attenuated by proteasome-mediated protein degradation in Japanese encephalitis virus-infected cells.J. Virol. 2008; 82 (18768981): 10455-1046410.1128/JVI.00438-08Crossref PubMed Scopus (63) Google Scholar) and Chikungunya fevers (23Carissimo G. Teo T.-H. Chan Y.-H. Lee C.Y.-P. Lee B. Torres-Ruesta A. Tan J.J. Chua T.-K. Fong S.-W. Lum F.-M. Ng L.F. Viperin controls chikungunya virus-specific pathogenic T cell IFNγ Th1 stimulation in mice.Life Sci. Alliance. 2019; 2 (30665948): e20190029810.26508/lsa.201900298Crossref PubMed Scopus (9) Google Scholar, 24Teng T.-S. Foo S.-S. Simamarta D. Lum F.-M. Teo T.-H. Lulla A. Yeo N.K.W. Koh E.G.L. Chow A. Leo Y.-S. Merits A. Chin K.-C. Ng L.F.P. Viperin restricts chikungunya virus replication and pathology.J. Clin. Invest. 2012; 122 (23160199): 4447-446010.1172/JCI63120Crossref PubMed Scopus (122) Google Scholar, 26Chan Y.-L. Chang T.-H. Liao C.-L. Lin Y.-L. The cellular antiviral protein viperin is attenuated by proteasome-mediated protein degradation in Japanese encephalitis virus-infected cells.J. Virol. 2008; 82 (18768981): 10455-1046410.1128/JVI.00438-08Crossref PubMed Scopus (63) Google Scholar). Last, viperin exhibits antiviral properties against negative-strand RNA viruses, including orthomyxoviruses such as influenza A virus (11Wang X. Hinson E.R. Cresswell P. The interferon-inducible protein viperin inhibits influenza virus release by perturbing lipid rafts.Cell Host Microbe. 2007; 2 (18005724): 96-10510.1016/j.chom.2007.06.009Abstract Full Text Full Text PDF PubMed Scopus (297) Google Scholar), rhabdoviruses including rabies virus (1Seo J.-Y. Yaneva R. Cresswell P. Viperin: a multifunctional, interferon-inducible protein that regulates virus replication.Cell Host Microbe. 2011; 10 (22177558): 534-53910.1016/j.chom.2011.11.004Abstract Full Text Full Text PDF PubMed Scopus (120) Google Scholar, 39Tang H.-B. Lu Z.-L. Wei X.-K. Zhong T.-Z. Zhong Y.-Z. Ouyang L.-X. Luo Y. Xing X.-W. Liao F. Peng K.-K. Deng C.-Q. Minamoto N. Luo T.R. Viperin inhibits rabies virus replication via reduced cholesterol and sphingomyelin and is regulated upstream by TLR4.Sci. Rep. 2016; 6 (27456665): 3052910.1038/srep30529Crossref PubMed Scopus (24) Google Scholar), and paramyxoviruses such as Sendai virus (1Seo J.-Y. Yaneva R. Cresswell P. Viperin: a multifunctional, interferon-inducible protein that regulates virus replication.Cell Host Microbe. 2011; 10 (22177558): 534-53910.1016/j.chom.2011.11.004Abstract Full Text Full Text PDF PubMed Scopus (120) Google Scholar, 27Horner S.M. Wilkins C. Badil S. Iskarpatyoti J. Gale Jr., M. Proteomic analysis of mitochondrial-associated ER membranes (MAM) during RNA virus infection reveals dynamic changes in protein and organelle trafficking.PLoS ONE. 2015; 10: e011796310.1371/journal.pone.0117963Crossref PubMed Scopus (61) Google Scholar).Table 1Viruses reported to be restricted by viperinVirusVirus familyMechanism of restrictionReferencesssRNA viruses Influenza AOrthomyxoviridaeInhibits viral budding from cell membrane8Fitzgerald K.A. The interferon inducible gene: viperin.J. Interferon Cytokine Res. 2011; 31 (21142818): 131-13510.1089/jir.2010.0127Crossref PubMed Scopus (108) Google Scholar, 11Wang X. Hinson E.R. Cresswell P. The interferon-inducible protein viperin inhibits influenza virus release by perturbing lipid rafts.Cell Host Microbe. 2007; 2 (18005724): 96-10510.1016/j.chom.2007.06.009Abstract Full Text Full Text PDF PubMed Scopus (297) Google Scholar Hepatitis CFlaviviridaeInhibits formation of replication complex by promoting degradation of viral protein NS5A12Helbig K.J. Eyre N.S. Yip E. Narayana S. Li K. Fiches G. McCartney E.M. Jangra R.K. Lemon S.M. Beard M.R. The antiviral protein viperin inhibits hepatitis C virus replication via interaction with nonstructural protein 5A.Hepatology. 2011; 54 (22045669): 1506-151710.1002/hep.24542Crossref PubMed Scopus (136) Google Scholar13Wang S. Wu X. Pan T. Song W. Wang Y. Zhang F. Yuan Z. Viperin inhibits hepatitis C virus replication by interfering with binding of NS5A to host protein hVAP-33.J. Gen. Virol. 2012; 93 (21957124): 83-9210.1099/vir.0.033860-0Crossref PubMed Scopus (77) Google Scholar14Ghosh S. Patel A.M. Grunkemeyer T.J. Dumbrepatil A.B. Zegalia K. Kennedy R.T. Marsh E.N.G. Interactions between viperin, vesicle-associated membrane protein A, and Hepatitis C virus protein NS5A modulate viperin activity and NS5A degradation.Biochemistry. 2020; 59 (31977203): 780-78910.1021/acs.biochem.9b01090Crossref PubMed Scopus (2) Google Scholar Dengue (type II)FlaviviridaeInhibits viral genome replication interacting with viral protein NS33Lindqvist R. Överby A.K. The role of viperin in antiflavivirus Responses.DNA Cell Biol. 2018; 37 (30059238): 725-73010.1089/dna.2018.4328Crossref PubMed Scopus (8) Google Scholar, 15Jiang D. Weidner J.M. Qing M. Pan X.-B. Guo H. Xu C. Zhang X. Birk A. Chang J. Shi P.-Y. Block T.M. Guo J.-T. Identification of five interferon-induced cellular proteins that inhibit West Nile virus and dengue virus infections.J. Virol. 2010; 84 (20534863): 8332-834110.1128/JVI.02199-09Crossref PubMed Scopus (233) Google Scholar16Helbig K.J. Carr J.M. Calvert J.K. Wati S. Clarke J.N. Eyre N.S. Narayana S.K. Fiches G.N. McCartney E.M. Beard M.R. Viperin is induced following dengue virus type-2 (DENV-2) infection and has anti-viral actions requiring the C-terminal end of viperin.PLoS Negl. Trop. Dis. 2013; 7 (23638199): e217810.1371/journal.pntd.0002178Crossref PubMed Scopus (93) Google Scholar17Cedillo-Barrón L. García-Cordero J. Shrivastava G. Carrillo-Halfon S. León-Juárez M. Bustos Arriaga J. León Valenzuela P. Gutiérrez Castañeda B. The role of flaviviral proteins in the induction of innate immunity.Subcell. Biochem. 2018; 88 (29900506): 407-44210.1007/978-981-10-8456-0_17Crossref PubMed Scopus (0) Google Scholar Tick-borne encephalitisFlaviviridaePromotes degradation of viral protein NS3 through proteasome-mediated pathway18Panayiotou C. Lindqvist R. Kurhade C. Vonderstein K. Pasto J. Edlund K. Upadhyay A.S. Överby A.K. Viperin restricts Zika virus and tick-borne encephalitis virus replication by targeting NS3 for proteasomal degradation.J. Virol. 2018; 92 (29321318): e02054-e0211710.1128/jvi.02054-17PubMed Google Scholar19Upadhyay A.S. Vonderstein K. Pichlmair A. Stehling O. Bennett K.L. Dobler G. Guo J.-T. Superti-Furga G. Lill R. Överby A.K. Weber F. Viperin is an iron-sulfur protein that inhibits genome synthesis of tick-borne encephalitis virus via radical SAM domain activity.Cell. Microbiol. 2014; 16 (24245804): 834-84810.1111/cmi.12241Crossref PubMed Scopus (59) Google Scholar20Lindqvist R. Upadhyay A. Överby A.K. Tick-borne flaviviruses and the type I interferon response.Viruses. 2018; 10 (29933625): 34010.3390/v10070340Crossref Scopus (9) Google Scholar ZikaFlaviviridaePromotes degradation of viral protein NS3 through proteasome-mediated pathway3Lindqvist R. Överby A.K. The role of viperin in antiflavivirus Responses.DNA Cell Biol. 2018; 37 (30059238): 725-73010.1089/dna.2018.4328Crossref PubMed Scopus (8) Google Scholar, 17Cedillo-Barrón L. García-Cordero J. Shrivastava G. Carrillo-Halfon S. León-Juárez M. Bustos Arriaga J. León Valenzuela P. Gutiérrez Castañeda B. The role of flaviviral proteins in the induction of innate immunity.Subcell. Biochem. 2018; 88 (29900506): 407-44210.1007/978-981-10-8456-0_17Crossref PubMed Scopus (0) Google Scholar, 18Panayiotou C. Lindqvist R. Kurhade C. Vonderstein K. Pasto J. Edlund K. Upadhyay A.S. Överby A.K. Viperin restricts Zika virus and tick-borne encephalitis virus replication by targeting NS3 for proteasomal degradation.J. Virol. 2018; 92 (29321318): e02054-e0211710.1128/jvi.02054-17PubMed Google Scholar, 21Van der Hoek K.H. Eyre N.S. Shue B. Khantisitthiporn O. Glab-Ampi K. Carr J.M. Gartner M.J. Jolly L.A. Thomas P.Q. Adikusuma F. Jankovic-Karasoulos T. Roberts C.T. Helbig K.J. Beard M.R. Viperin is an important host restriction factor in control of Zika virus infection.Sci. Rep. 2017; 7 (28667332): 447510.1038/s41598-017-04138-1Crossref PubMed Scopus (53) Google Scholar, 22Vanwalscappel B. Tada T. Landau N.R. Toll-like receptor agonist R848 blocks Zika virus replication by inducing the antiviral protein viperin.Virology. 2018; 522 (30036788): 199-20810.1016/j.virol.2018.07.014Crossref PubMed Scopus (22) Google Scholar West NileFlaviviridaeRegulates viral replication; exact molecular mechanism not known3Lindqvist R. Överby A.K. The role of viperin in antiflavivirus Responses.DNA Cell Biol. 2018; 37 (30059238): 725-73010.1089/dna.2018.4328Crossref PubMed Scopus (8) Google Scholar, 15Jiang D. Weidner J.M. Qing M. Pan X.-B. Guo H. Xu C. Zhang X. Birk A. Chang J. Shi P.-Y. Block T.M. Guo J.-T. Identification of five interferon-induced cellular proteins that inhibit West Nile virus and dengue virus infections.J. Virol. 2010; 84 (20534863): 8332-834110.1128/JVI.02199-09Crossref PubMed Scopus (233) Google Scholar, 17Cedillo-Barrón L. García-Cordero J. Shrivastava G. Carrillo-Halfon S. León-Juárez M. Bustos Arriaga J. León Valenzuela P. Gutiérrez Castañeda B. The role of flaviviral proteins in the induction of innate immunity.Subcell. Biochem. 2018; 88 (29900506): 407-44210.1007/978-981-10-8456-0_17Crossref PubMed Scopus (0) Google Scholar ChikungunyaTogaviridaeReduces expression of viral RNA helicase protein NSP2; exact mechanism not known23Carissimo G. Teo T.-H. Chan Y.-H. Lee C.Y.-P. Lee B. Torres-Ruesta A. Tan J.J. Chua T.-K. Fong S.-W. Lum F.-M. Ng L.F. Viperin controls chikungunya virus-specific pathogenic T cell IFNγ Th1 stimulation in mice.Life Sci. Alliance. 2019; 2 (30665948): e20190029810.26508/lsa.201900298Crossref PubMed Scopus (9) Google Scholar, 24Teng T.-S. Foo S.-S. Simamarta D. Lum F.-M. Teo T.-H. Lulla A. Yeo N.K.W. Koh E.G.L. Chow A. Leo Y.-S. Merits A. Chin K.-C. Ng L.F.P. Viperin restricts chikungunya virus replication and pathology.J. Clin. Invest. 2012; 122 (23160199): 4447-446010.1172/JCI63120Crossref PubMed Scopus (122) Google Scholar SindbisTogaviridaeRegulates viral replication; exact mechanism not known25Zhang Y. Burke C.W. Ryman K.D. Klimstra W.B. Identification and characterization of interferon-induced proteins that inhibit alphavirus replication.J. Virol. 2007; 81 (17686841): 11246-1125510.1128/JVI.01282-07Crossref PubMed Scopus (176) Google Scholar, 26Chan Y.-L. Chang T.-H. Liao C.-L. Lin Y.-L. The cellular antiviral protein viperin is attenuated by proteasome-mediated protein degradation in Japanese encephalitis virus-infected cells.J. Virol. 2008; 82 (18768981): 10455-1046410.1128/JVI.00438-08Crossref PubMed Scopus (63) Google Scholar SendaiParamyxoviridaeControls viral replication; exact mechanism not known10Severa M. Coccia E.M. Fitzgerald K.A. Toll-like receptor-dependent and -independent viperin gene expression and counter-regulation by PRDI-binding factor-1/BLIMP1.J. Biol. Chem. 2006; 281 (16849320): 26188-2619510.1074/jbc.M604516200Abstract Full Text Full Text PDF PubMed Scopus (91) Google Scholar, 27Horner S.M. Wilkins C. Badil S. Iskarpatyoti J. Gale Jr., M. Proteomic analysis of mitochondrial-associated ER membranes (MAM) during RNA virus infection reveals dynamic changes in protein and organelle trafficking.PLoS ONE. 2015; 10: e011796310.1371/journal.pone.0117963Crossref PubMed Scopus (61) Google Scholar Vesicular stomatitis virusRhabdoviridaeInhibits viral replication in IFN-independent pathway28Boudinot P. Riffault S. Salhi S. Carrat C. Sedlik C. Mahmoudi N. Charley B. Benmansour A. Vesicular stomatitis virus and pseudorabies virus induce a vig1/cig5 homologue in mouse dendritic cells via different pathways.J. Gen. Virol. 2000; 81 (11038379): 2675-268210.1099/0022-1317-81-11-2675Crossref PubMed Google Scholar29Stirnweiss A. Ksienzyk A. Klages K. Rand U. Grashoff M. Hauser H. Kröger A. IFN regulatory factor-1 bypasses IFN-mediated antiviral effects through viperin gene induction.J. Immunol. 2010; 184 (20308629): 5179-518510.4049/jimmunol.0902264Crossref PubMed Scopus (83) Google Scholar30Yuan Y. Miao Y. Qian L. Zhang Y. Liu C. Liu J. Zuo Y. Feng Q. Guo T. Zhang L. Chen X. Jin L. Huang F. Zhang H. Zhang W. et al.Targeting UBE4A revives viperin protein in epithelium to enhance host antiviral defense.Mol. Cell. 2020; 77 (31812350): 734-747.e710.1016/j.molcel.2019.11.003Abstract Full Text Full Text PDF PubMed Scopus (4) Google Scholar Classical swine feverFlaviviridaeInhibits CSFV replication by interacting with viral nonstructural protein NS5A and E231Li W. Mao L. Cao Y. Zhou B. Yang L. Han L. Hao F. Lin T. Zhang W. Jiang J. Porcine viperin protein inhibits the replication of classical swine fever virus (CSFV) in vitro.Virol. J. 2017; 14 (29061156): 20210.1186/s12985-017-0868-4Crossref PubMed Scopus (12) Google Scholar, 32Xu C. Feng L. Chen P. Li A. Guo S. Jiao X. Zhang C. Zhao Y. Jin X. Zhong K. Guo Y. Zhu H. Han L. Yang G. Li H. et al.Viperin inhibits classical swine fever virus replication by interacting with viral nonstructural 5A protein.J. Med. Virol. 2020; 92 (31517388): 149-16010.1002/jmv.25595Crossref PubMed Scopus (7) Google Scholar Viral hemorrhagic septicemiaRhabdoviridaeInhibits RNA transcription and replication6Boudinot P. Massin P. Blanco M. Riffault S. Benmansour A. vig-1, a new fish gene induced by the rhabdovirus glycoprotein, has a virus-induced homologue in humans and shares conserved motifs with the MoaA family.J. Virol. 1999; 73 (9971762): 1846-185210.1128/JVI.73.3.1846-1852.1999Crossref PubMed Google Scholar, 33Shanaka K.A.S.N. Tharuka M.D.N. Priyathilaka T.T. Lee J. Molecular characterization and expression analysis of rockfish (Sebastes schlegelii) viperin, and its ability to enervate RNA virus transcription and replication in vitro.Fish Shellfish Immunol. 2019; 92 (31252045): 655-66610.1016/j.fsi.2019.06.015Crossref PubMed Scopus (4) Google Scholar MeaslesParamyxoviridaeInhibits viral release34Kurokawa C. Iankov I.D. Galanis E. A key anti-viral protein, RSAD2/VIPERIN, restricts the release of measles virus from infected cells.Virus Res. 2019; 263 (30684519): 145-15010.1016/j.virusres.2019.01.014Crossref PubMed Scopus (13) Google Scholar Newcastle diseaseParamyxoviridaeRegulates viral replication, potentially by interacting with viral matrix proteins, involved in viral assembly and budding29Stirnweiss A. Ksienzyk A. Klages K. Rand U. Grashoff M. Hauser H. Kröger A. IFN regulatory factor-1 bypasses IFN-mediated antiviral effects through viperin gene induction.J. Immunol. 2010; 184 (20308629): 5179-518510.4049/jimmunol.0902264Crossref PubMed Scopus (83) Google Scholar, 31Li W. Mao L. Cao Y. Zhou B. Yang L. Han L. Hao F. Lin T. Zhang W. Jiang J. Porcine viperin protein inhibits the replication of classical swine fever virus (CSFV) in vitro.Virol. J. 2017; 14 (29061156): 20210.1186/s12985-017-0868-4Crossref PubMed Scopus (12) Google Scholar, 35Shah M. Bharadwaj M.S.K. Gupta A. Kumar R. Kumar S. Chicken viperin inhibits Newcastle disease virus infection in vitro: a possible interaction with the viral matrix protein.Cytokine. 2019; 120 (31003187): 28-4010.1016/j.cyto.2019.04.007Crossref PubMed Scopus (6) Google Scholar Enterovirus A71PicornaviridaeInhibits viral replication by interacting with viral protein 2C, important for membrane binding of virus.36Wei C. Zheng C. Sun J. Luo D. Tang Y. Zhang Y. Ke X. Liu Y. Zheng Z. Wang H. Viperin inhibits enterovirus A71 replication by interacting with viral 2C protein.Viruses. 2018; 11 (30587778): 1310.3390/v11010013Crossref Scopus (9) Google Scholar Lymphocytic choriomeningitisArenaviridaeExact mechanism not known37Hinson E.R. Joshi N.S. Chen J.H. Rahner C. Jung Y.W. Wang X. Kaech S.M. Cresswell P. Viperin is highly induced in neutrophils and macrophages during acute and chronic lymphocytic choriomeningitis virus infection.J. Immunol. 2010; 184 (20410488): 5723-573110.4049/jimmunol.0903752Crossref PubMed Scopus (36) Google Scholar Junin mammarenaArenaviridaeImpairs viral budding by perturbing lipid droplet morphogenesis and mis localization of viral glycoproteins38Peña Cárcamo J.R. Morell M.L. Vázquez C.A. Vatansever S. Upadhyay A.S. Överby A.K. Cordo S.M. García C.C. The interplay between viperin antiviral activity, lipid droplets and Junín mammarenavirus multiplication.Virology. 2018; 514 (29202415): 216-22910.1016/j.virol.2017.10.012Crossref PubMed Scopus (0) Google Scholar RabiesRhabdoviridaeImpairs viral budding by disrupting cholesterol/sphingomyelin synthesis and up-regulating TLR428Boudinot P. Riffault S. Salhi S. Carrat C. Sedlik C. Mahmoudi N. Charley B. Benmansour A. Vesicular stomatitis virus and pseudorabies virus induce a vig1/cig5 homologue in mouse dendritic cells via different pathways.J. Gen. Virol. 2000; 81 (11038379): 2675-268210.1099/0022-1317-81-11-2675Crossref PubMed Google Scholar, 39Tang H.-B. Lu Z.-L. Wei X.-K. Zhong T.-Z. Zhong Y.-Z. Ouyang L.-X. Luo Y. Xing X.-W. Liao F. Peng K.-K. Deng C.-Q. Minamoto N. Luo T.R. Viperin inhibits rabies virus replication via reduced cholesterol and sphingomyelin and is regulated upstream by TLR4.Sci. Rep. 2016; 6 (27456665): 3052910.1038/srep30529Crossref PubMed Scopus (24) Google Scholar Porcine reproductive and respiratory syndromeArteriviridaeImpairs early steps of viral entry and genome replication and translation by interacting with viral protein N40Fang J. Wang H. Bai J. Zhang Q. Li Y. Liu F. Jiang P. Monkey viperin restricts porcine reproductive and respiratory syndrome virus replication.PLoS ONE. 2016; 11 (27232627): e015651310.1371/journal.pone.0156513Crossref PubMed Sco" @default.
- W3034546258 created "2020-06-19" @default.
- W3034546258 creator A5034733443 @default.
- W3034546258 creator A5057584218 @default.
- W3034546258 date "2020-08-01" @default.
- W3034546258 modified "2023-10-18" @default.
- W3034546258 title "Viperin: An ancient radical SAM enzyme finds its place in modern cellular metabolism and innate immunity" @default.
- W3034546258 cites W1587946714 @default.
- W3034546258 cites W1655903008 @default.
- W3034546258 cites W1909433302 @default.
- W3034546258 cites W1974650890 @default.
- W3034546258 cites W1975519799 @default.
- W3034546258 cites W1981582579 @default.
- W3034546258 cites W1983522593 @default.
- W3034546258 cites W1988263959 @default.
- W3034546258 cites W2002774545 @default.
- W3034546258 cites W2003752623 @default.
- W3034546258 cites W2005884645 @default.
- W3034546258 cites W2009392385 @default.
- W3034546258 cites W2025649507 @default.
- W3034546258 cites W2029114871 @default.
- W3034546258 cites W2030391162 @default.
- W3034546258 cites W2032908627 @default.
- W3034546258 cites W2034677427 @default.
- W3034546258 cites W2035765194 @default.
- W3034546258 cites W2037141003 @default.
- W3034546258 cites W2039193490 @default.
- W3034546258 cites W2041170395 @default.
- W3034546258 cites W2045739255 @default.
- W3034546258 cites W2045812944 @default.
- W3034546258 cites W2047316178 @default.
- W3034546258 cites W2047581693 @default.
- W3034546258 cites W2050937759 @default.
- W3034546258 cites W2051417242 @default.
- W3034546258 cites W2052801193 @default.
- W3034546258 cites W2052932569 @default.
- W3034546258 cites W2053607178 @default.
- W3034546258 cites W2057967679 @default.
- W3034546258 cites W2058122617 @default.
- W3034546258 cites W2066657425 @default.
- W3034546258 cites W2069284349 @default.
- W3034546258 cites W2076007552 @default.
- W3034546258 cites W2077014435 @default.
- W3034546258 cites W2078254644 @default.
- W3034546258 cites W2079443260 @default.
- W3034546258 cites W2083676484 @default.
- W3034546258 cites W2089552617 @default.
- W3034546258 cites W2092498488 @default.
- W3034546258 cites W2095763239 @default.
- W3034546258 cites W2099567406 @default.
- W3034546258 cites W2100918802 @default.
- W3034546258 cites W2101186629 @default.
- W3034546258 cites W2107380548 @default.
- W3034546258 cites W2118166155 @default.
- W3034546258 cites W2126205901 @default.
- W3034546258 cites W2126677251 @default.
- W3034546258 cites W2128795911 @default.
- W3034546258 cites W2150558072 @default.
- W3034546258 cites W2150710339 @default.
- W3034546258 cites W2153226682 @default.
- W3034546258 cites W2159522530 @default.
- W3034546258 cites W2171545875 @default.
- W3034546258 cites W2182977810 @default.
- W3034546258 cites W2237797200 @default.
- W3034546258 cites W2317418252 @default.
- W3034546258 cites W2318540405 @default.
- W3034546258 cites W2323231059 @default.
- W3034546258 cites W2333303357 @default.
- W3034546258 cites W2396643508 @default.
- W3034546258 cites W2403143312 @default.
- W3034546258 cites W2482441200 @default.
- W3034546258 cites W2552175069 @default.
- W3034546258 cites W2588251887 @default.
- W3034546258 cites W2625271458 @default.
- W3034546258 cites W2626280944 @default.
- W3034546258 cites W2677591396 @default.
- W3034546258 cites W2740144814 @default.
- W3034546258 cites W2747568591 @default.
- W3034546258 cites W2763801778 @default.
- W3034546258 cites W2765216217 @default.
- W3034546258 cites W2767164488 @default.
- W3034546258 cites W2768695173 @default.
- W3034546258 cites W2771363929 @default.
- W3034546258 cites W2775690235 @default.
- W3034546258 cites W2798220330 @default.
- W3034546258 cites W2808715248 @default.
- W3034546258 cites W2809659262 @default.
- W3034546258 cites W2809660639 @default.
- W3034546258 cites W2883050635 @default.
- W3034546258 cites W2883180486 @default.
- W3034546258 cites W2884924175 @default.
- W3034546258 cites W2886501027 @default.
- W3034546258 cites W2906235770 @default.
- W3034546258 cites W2906497797 @default.
- W3034546258 cites W2911838148 @default.
- W3034546258 cites W2913266901 @default.
- W3034546258 cites W2913674192 @default.
- W3034546258 cites W2920830240 @default.