Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034632018> ?p ?o ?g. }
- W3034632018 endingPage "105882" @default.
- W3034632018 startingPage "105882" @default.
- W3034632018 abstract "Portfolio selection based on high-dimensional covariance matrices is a key challenge in data-rich environments with the curse of dimensionality severely affecting most of the available covariance models. We challenge several multivariate Dynamic Conditional Correlation (DCC)-type and Stochastic Volatility (SV)-type models to obtain minimum-variance and mean-variance portfolios with up to 1000 assets. We conclude that, in a realistic context in which transaction costs are taken into account, although DCC-type models lead to portfolios with lower variance, modeling the covariance matrices as latent Wishart processes with a shrinkage towards the diagonal covariance matrix delivers more stable optimal portfolios with lower turnover and higher information ratios. Our results reconcile previous findings in the portfolio selection literature as those claiming for equicorrelations, a smooth dynamic evolution of correlations or correlations close to zero." @default.
- W3034632018 created "2020-06-19" @default.
- W3034632018 creator A5010508989 @default.
- W3034632018 creator A5036810244 @default.
- W3034632018 creator A5054554182 @default.
- W3034632018 date "2020-09-01" @default.
- W3034632018 modified "2023-10-08" @default.
- W3034632018 title "Comparing high-dimensional conditional covariance matrices: Implications for portfolio selection" @default.
- W3034632018 cites W1727659491 @default.
- W3034632018 cites W1921832629 @default.
- W3034632018 cites W1968305514 @default.
- W3034632018 cites W1972847850 @default.
- W3034632018 cites W1977776321 @default.
- W3034632018 cites W2018381203 @default.
- W3034632018 cites W2021614726 @default.
- W3034632018 cites W2062125287 @default.
- W3034632018 cites W2065762448 @default.
- W3034632018 cites W2077171408 @default.
- W3034632018 cites W2125520394 @default.
- W3034632018 cites W2148385653 @default.
- W3034632018 cites W2153155589 @default.
- W3034632018 cites W2155291729 @default.
- W3034632018 cites W2163969674 @default.
- W3034632018 cites W2167915877 @default.
- W3034632018 cites W2171040943 @default.
- W3034632018 cites W2183337476 @default.
- W3034632018 cites W2271406867 @default.
- W3034632018 cites W2515333341 @default.
- W3034632018 cites W2515903151 @default.
- W3034632018 cites W2620150093 @default.
- W3034632018 cites W2899202057 @default.
- W3034632018 cites W2950381474 @default.
- W3034632018 cites W2964012043 @default.
- W3034632018 cites W3121324299 @default.
- W3034632018 cites W3121764760 @default.
- W3034632018 cites W3121884963 @default.
- W3034632018 cites W3122849058 @default.
- W3034632018 cites W3122854346 @default.
- W3034632018 cites W3123288201 @default.
- W3034632018 cites W3123979261 @default.
- W3034632018 cites W3124020741 @default.
- W3034632018 cites W3124138322 @default.
- W3034632018 cites W3124158341 @default.
- W3034632018 cites W3125366755 @default.
- W3034632018 cites W3125543873 @default.
- W3034632018 cites W3125814160 @default.
- W3034632018 cites W3125886357 @default.
- W3034632018 cites W4240040690 @default.
- W3034632018 cites W4253163276 @default.
- W3034632018 cites W4376849508 @default.
- W3034632018 doi "https://doi.org/10.1016/j.jbankfin.2020.105882" @default.
- W3034632018 hasPublicationYear "2020" @default.
- W3034632018 type Work @default.
- W3034632018 sameAs 3034632018 @default.
- W3034632018 citedByCount "16" @default.
- W3034632018 countsByYear W30346320182019 @default.
- W3034632018 countsByYear W30346320182020 @default.
- W3034632018 countsByYear W30346320182021 @default.
- W3034632018 countsByYear W30346320182022 @default.
- W3034632018 countsByYear W30346320182023 @default.
- W3034632018 crossrefType "journal-article" @default.
- W3034632018 hasAuthorship W3034632018A5010508989 @default.
- W3034632018 hasAuthorship W3034632018A5036810244 @default.
- W3034632018 hasAuthorship W3034632018A5054554182 @default.
- W3034632018 hasConcept C105795698 @default.
- W3034632018 hasConcept C106159729 @default.
- W3034632018 hasConcept C111030470 @default.
- W3034632018 hasConcept C149782125 @default.
- W3034632018 hasConcept C151730666 @default.
- W3034632018 hasConcept C154945302 @default.
- W3034632018 hasConcept C161584116 @default.
- W3034632018 hasConcept C162324750 @default.
- W3034632018 hasConcept C178650346 @default.
- W3034632018 hasConcept C180877172 @default.
- W3034632018 hasConcept C185142706 @default.
- W3034632018 hasConcept C202655437 @default.
- W3034632018 hasConcept C21430997 @default.
- W3034632018 hasConcept C23922673 @default.
- W3034632018 hasConcept C2779343474 @default.
- W3034632018 hasConcept C2780821815 @default.
- W3034632018 hasConcept C33923547 @default.
- W3034632018 hasConcept C33962027 @default.
- W3034632018 hasConcept C41008148 @default.
- W3034632018 hasConcept C81917197 @default.
- W3034632018 hasConcept C85393063 @default.
- W3034632018 hasConcept C86803240 @default.
- W3034632018 hasConcept C91602232 @default.
- W3034632018 hasConceptScore W3034632018C105795698 @default.
- W3034632018 hasConceptScore W3034632018C106159729 @default.
- W3034632018 hasConceptScore W3034632018C111030470 @default.
- W3034632018 hasConceptScore W3034632018C149782125 @default.
- W3034632018 hasConceptScore W3034632018C151730666 @default.
- W3034632018 hasConceptScore W3034632018C154945302 @default.
- W3034632018 hasConceptScore W3034632018C161584116 @default.
- W3034632018 hasConceptScore W3034632018C162324750 @default.
- W3034632018 hasConceptScore W3034632018C178650346 @default.
- W3034632018 hasConceptScore W3034632018C180877172 @default.
- W3034632018 hasConceptScore W3034632018C185142706 @default.