Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034639185> ?p ?o ?g. }
- W3034639185 endingPage "7237" @default.
- W3034639185 startingPage "7222" @default.
- W3034639185 abstract "Availability of longitudinal body weight (BW) records allows the application of nonlinear models (NLINM) to predict phenotypic and genomic growth curves in dairy cattle. In this regard, we considered a data set including 31,722 BW records from 4,952 female Holstein cattle, during the period from birth (mo 0) to approximately age at first calving (mo 24). Parameters of the growth curves were estimated using 3 NLINM: the logistic (LOG), the Gompertz (GOM), and the Richards (RICH) functions. Residuals for the growth curve parameters from the NLINM applications were used as pseudo-phenotypes in the ongoing genomic analyses with different similarity matrices, including 2 genomic relationship matrices (G1 and G2), a combined pedigree and genomic relationship matrix (H), and 3 kernel matrices. The kernels were a weighted “alike by state” kernel function (K1), an exponential dissimilarity kernel (K2), and a Gaussian kernel (K3). On the basis of G1 and G2 matrices, genomic heritabilities for the growth curve parameters birth weight (W0), mature weight (Wm), and growth rate (k), and the shape parameter (m; only available from RICH) were moderate to large, in the range from 0.29 (m from RICH) to 0.46 (k from RICH). Fitting the similarity matrices based on kernel functions contributed to an increase of the ratio of the variance explained by the similarity matrix in relation to the total variance (compared with the heritability when modeling G1 or G2). Genetic correlations between W0, Wm, and k were always positive (>0.30), especially for the same growth curve parameters estimated from different NLINM (>0.90). The shape parameter m from RICH was negatively correlated with other growth curve parameters, from −0.29 to −0.95. In a next step, estimated genomic breeding values for growth curve parameters were input data for the respective NLINM, aiming to construct genomic growth curves. Prediction accuracies were correlations between genomic growth curves and genomic breeding values from random regression models for sires and female cattle. Considering all genotyped female cattle with pseudo-phenotypes, prediction accuracies were larger from RICH than from LOG and GOM. However, differences in prediction accuracies from the NLINM × similarity matrix combinations were quite small. Accordingly, in 5-fold cross-validations using heifer groups with masked phenotypes, very similar prediction accuracies across modeling approaches were identified. Especially for specific age months, genomic growth curve predictions were more accurate for sires than for female cattle, indicating that the relationships between animals in training and validation sets are more important than the selection of specific NLINM × similarity matrix combinations." @default.
- W3034639185 created "2020-06-19" @default.
- W3034639185 creator A5002707746 @default.
- W3034639185 creator A5036832151 @default.
- W3034639185 date "2020-08-01" @default.
- W3034639185 modified "2023-09-26" @default.
- W3034639185 title "Genomic predictions of growth curves in Holstein dairy cattle based on parameter estimates from nonlinear models combined with different kernel functions" @default.
- W3034639185 cites W156101305 @default.
- W3034639185 cites W1642996972 @default.
- W3034639185 cites W1745029604 @default.
- W3034639185 cites W1765857283 @default.
- W3034639185 cites W2002970862 @default.
- W3034639185 cites W2006036724 @default.
- W3034639185 cites W2008582050 @default.
- W3034639185 cites W2015904350 @default.
- W3034639185 cites W2044062560 @default.
- W3034639185 cites W2064013109 @default.
- W3034639185 cites W2067100182 @default.
- W3034639185 cites W2067715889 @default.
- W3034639185 cites W2073977929 @default.
- W3034639185 cites W2076294942 @default.
- W3034639185 cites W2082192860 @default.
- W3034639185 cites W2082573972 @default.
- W3034639185 cites W2099085143 @default.
- W3034639185 cites W2100322632 @default.
- W3034639185 cites W2109349581 @default.
- W3034639185 cites W2114123573 @default.
- W3034639185 cites W2114281975 @default.
- W3034639185 cites W2121837305 @default.
- W3034639185 cites W2122291037 @default.
- W3034639185 cites W2122617678 @default.
- W3034639185 cites W2132896219 @default.
- W3034639185 cites W2134432161 @default.
- W3034639185 cites W2137519970 @default.
- W3034639185 cites W2140035397 @default.
- W3034639185 cites W2154562310 @default.
- W3034639185 cites W2159793531 @default.
- W3034639185 cites W2163953557 @default.
- W3034639185 cites W2164050502 @default.
- W3034639185 cites W2268512411 @default.
- W3034639185 cites W2278685458 @default.
- W3034639185 cites W2281688380 @default.
- W3034639185 cites W2418281307 @default.
- W3034639185 cites W2460111538 @default.
- W3034639185 cites W2602650333 @default.
- W3034639185 cites W2613469027 @default.
- W3034639185 cites W2724845955 @default.
- W3034639185 cites W2777335810 @default.
- W3034639185 doi "https://doi.org/10.3168/jds.2019-18010" @default.
- W3034639185 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32534925" @default.
- W3034639185 hasPublicationYear "2020" @default.
- W3034639185 type Work @default.
- W3034639185 sameAs 3034639185 @default.
- W3034639185 citedByCount "6" @default.
- W3034639185 countsByYear W30346391852021 @default.
- W3034639185 countsByYear W30346391852022 @default.
- W3034639185 countsByYear W30346391852023 @default.
- W3034639185 crossrefType "journal-article" @default.
- W3034639185 hasAuthorship W3034639185A5002707746 @default.
- W3034639185 hasAuthorship W3034639185A5036832151 @default.
- W3034639185 hasBestOaLocation W30346391851 @default.
- W3034639185 hasConcept C103278499 @default.
- W3034639185 hasConcept C105795698 @default.
- W3034639185 hasConcept C114614502 @default.
- W3034639185 hasConcept C115961682 @default.
- W3034639185 hasConcept C121332964 @default.
- W3034639185 hasConcept C134463574 @default.
- W3034639185 hasConcept C154945302 @default.
- W3034639185 hasConcept C161890455 @default.
- W3034639185 hasConcept C163716315 @default.
- W3034639185 hasConcept C2776913854 @default.
- W3034639185 hasConcept C33923547 @default.
- W3034639185 hasConcept C41008148 @default.
- W3034639185 hasConcept C54355233 @default.
- W3034639185 hasConcept C62520636 @default.
- W3034639185 hasConcept C7218915 @default.
- W3034639185 hasConcept C74193536 @default.
- W3034639185 hasConcept C86803240 @default.
- W3034639185 hasConceptScore W3034639185C103278499 @default.
- W3034639185 hasConceptScore W3034639185C105795698 @default.
- W3034639185 hasConceptScore W3034639185C114614502 @default.
- W3034639185 hasConceptScore W3034639185C115961682 @default.
- W3034639185 hasConceptScore W3034639185C121332964 @default.
- W3034639185 hasConceptScore W3034639185C134463574 @default.
- W3034639185 hasConceptScore W3034639185C154945302 @default.
- W3034639185 hasConceptScore W3034639185C161890455 @default.
- W3034639185 hasConceptScore W3034639185C163716315 @default.
- W3034639185 hasConceptScore W3034639185C2776913854 @default.
- W3034639185 hasConceptScore W3034639185C33923547 @default.
- W3034639185 hasConceptScore W3034639185C41008148 @default.
- W3034639185 hasConceptScore W3034639185C54355233 @default.
- W3034639185 hasConceptScore W3034639185C62520636 @default.
- W3034639185 hasConceptScore W3034639185C7218915 @default.
- W3034639185 hasConceptScore W3034639185C74193536 @default.
- W3034639185 hasConceptScore W3034639185C86803240 @default.
- W3034639185 hasIssue "8" @default.
- W3034639185 hasLocation W30346391851 @default.
- W3034639185 hasLocation W30346391852 @default.