Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034650994> ?p ?o ?g. }
- W3034650994 endingPage "8689" @default.
- W3034650994 startingPage "8680" @default.
- W3034650994 abstract "Artificial intelligence-based machinery fault diagnosis techniques have been increasingly considered in many industrial fields. The convolutional neural network (CNN) is able to learn features from raw signals because of its filter structure. Thus, several studies have applied CNN-based methods for machinery fault recognition and classification. However, most of these studies are based on a balanced data set, while ignoring that normal data and fault data tend to be highly imbalanced in real-world applications. Conventional CNNs do not work well for highly imbalanced fault diagnostics tasks and often lead to the degradation of performance. Therefore, in this article, a learning framework called deep focus parallel convolutional neural network (DFPCN) is proposed to overcome the weakness. It has powerful feature learning capabilities due to its parallel convolutional architecture. A new loss function named adaptive cross entropy loss (ACE loss) is designed for the DFPCN to focus training on minority health condition samples which are hard to classify. The effectiveness and superiority of the proposed DFPCN are validated by a highly imbalanced data set constructed from bearing vibration signals. The diagnostics results demonstrate that DFPCN outperforms the state-of-the-art CNN-based methods in terms of accuracy and stability, and avoids adding computational burden with the redundant samples when compared with oversampling methods." @default.
- W3034650994 created "2020-06-19" @default.
- W3034650994 creator A5000283744 @default.
- W3034650994 creator A5007241832 @default.
- W3034650994 creator A5018776624 @default.
- W3034650994 creator A5055401422 @default.
- W3034650994 creator A5064945387 @default.
- W3034650994 date "2020-11-01" @default.
- W3034650994 modified "2023-10-12" @default.
- W3034650994 title "Deep Focus Parallel Convolutional Neural Network for Imbalanced Classification of Machinery Fault Diagnostics" @default.
- W3034650994 cites W1974079881 @default.
- W3034650994 cites W2005523062 @default.
- W3034650994 cites W2054594459 @default.
- W3034650994 cites W2078622091 @default.
- W3034650994 cites W2107138773 @default.
- W3034650994 cites W2132791018 @default.
- W3034650994 cites W2148143831 @default.
- W3034650994 cites W2219903032 @default.
- W3034650994 cites W2404692435 @default.
- W3034650994 cites W2461729787 @default.
- W3034650994 cites W2514763704 @default.
- W3034650994 cites W2551429935 @default.
- W3034650994 cites W2562762876 @default.
- W3034650994 cites W2582043155 @default.
- W3034650994 cites W2584994008 @default.
- W3034650994 cites W2591055632 @default.
- W3034650994 cites W2594332903 @default.
- W3034650994 cites W2603304445 @default.
- W3034650994 cites W2735326783 @default.
- W3034650994 cites W2767031373 @default.
- W3034650994 cites W2767106145 @default.
- W3034650994 cites W2767234670 @default.
- W3034650994 cites W2791036512 @default.
- W3034650994 cites W2792018332 @default.
- W3034650994 cites W2794869810 @default.
- W3034650994 cites W2898375427 @default.
- W3034650994 cites W2904460913 @default.
- W3034650994 cites W2914309864 @default.
- W3034650994 cites W2919115771 @default.
- W3034650994 cites W2956342231 @default.
- W3034650994 cites W2962949934 @default.
- W3034650994 cites W2963596856 @default.
- W3034650994 cites W2970706158 @default.
- W3034650994 cites W2972641997 @default.
- W3034650994 cites W2996827952 @default.
- W3034650994 cites W641901101 @default.
- W3034650994 doi "https://doi.org/10.1109/tim.2020.2998233" @default.
- W3034650994 hasPublicationYear "2020" @default.
- W3034650994 type Work @default.
- W3034650994 sameAs 3034650994 @default.
- W3034650994 citedByCount "55" @default.
- W3034650994 countsByYear W30346509942020 @default.
- W3034650994 countsByYear W30346509942021 @default.
- W3034650994 countsByYear W30346509942022 @default.
- W3034650994 countsByYear W30346509942023 @default.
- W3034650994 crossrefType "journal-article" @default.
- W3034650994 hasAuthorship W3034650994A5000283744 @default.
- W3034650994 hasAuthorship W3034650994A5007241832 @default.
- W3034650994 hasAuthorship W3034650994A5018776624 @default.
- W3034650994 hasAuthorship W3034650994A5055401422 @default.
- W3034650994 hasAuthorship W3034650994A5064945387 @default.
- W3034650994 hasConcept C108583219 @default.
- W3034650994 hasConcept C119857082 @default.
- W3034650994 hasConcept C120665830 @default.
- W3034650994 hasConcept C121332964 @default.
- W3034650994 hasConcept C127313418 @default.
- W3034650994 hasConcept C153180895 @default.
- W3034650994 hasConcept C154945302 @default.
- W3034650994 hasConcept C165205528 @default.
- W3034650994 hasConcept C175551986 @default.
- W3034650994 hasConcept C192209626 @default.
- W3034650994 hasConcept C41008148 @default.
- W3034650994 hasConcept C50644808 @default.
- W3034650994 hasConcept C81363708 @default.
- W3034650994 hasConceptScore W3034650994C108583219 @default.
- W3034650994 hasConceptScore W3034650994C119857082 @default.
- W3034650994 hasConceptScore W3034650994C120665830 @default.
- W3034650994 hasConceptScore W3034650994C121332964 @default.
- W3034650994 hasConceptScore W3034650994C127313418 @default.
- W3034650994 hasConceptScore W3034650994C153180895 @default.
- W3034650994 hasConceptScore W3034650994C154945302 @default.
- W3034650994 hasConceptScore W3034650994C165205528 @default.
- W3034650994 hasConceptScore W3034650994C175551986 @default.
- W3034650994 hasConceptScore W3034650994C192209626 @default.
- W3034650994 hasConceptScore W3034650994C41008148 @default.
- W3034650994 hasConceptScore W3034650994C50644808 @default.
- W3034650994 hasConceptScore W3034650994C81363708 @default.
- W3034650994 hasFunder F4320321001 @default.
- W3034650994 hasFunder F4320335787 @default.
- W3034650994 hasIssue "11" @default.
- W3034650994 hasLocation W30346509941 @default.
- W3034650994 hasOpenAccess W3034650994 @default.
- W3034650994 hasPrimaryLocation W30346509941 @default.
- W3034650994 hasRelatedWork W2337926734 @default.
- W3034650994 hasRelatedWork W2732542196 @default.
- W3034650994 hasRelatedWork W2738221750 @default.
- W3034650994 hasRelatedWork W3021430260 @default.
- W3034650994 hasRelatedWork W3136076031 @default.