Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034655770> ?p ?o ?g. }
- W3034655770 endingPage "e0234722" @default.
- W3034655770 startingPage "e0234722" @default.
- W3034655770 abstract "Machine learning (ML) has attracted much attention with the hope that it could make use of large, routinely collected datasets and deliver accurate personalised prognosis. The aim of this systematic review is to identify and critically appraise the reporting and developing of ML models for predicting outcomes after stroke.We searched PubMed and Web of Science from 1990 to March 2019, using previously published search filters for stroke, ML, and prediction models. We focused on structured clinical data, excluding image and text analysis. This review was registered with PROSPERO (CRD42019127154).Eighteen studies were eligible for inclusion. Most studies reported less than half of the terms in the reporting quality checklist. The most frequently predicted stroke outcomes were mortality (7 studies) and functional outcome (5 studies). The most commonly used ML methods were random forests (9 studies), support vector machines (8 studies), decision trees (6 studies), and neural networks (6 studies). The median sample size was 475 (range 70-3184), with a median of 22 predictors (range 4-152) considered. All studies evaluated discrimination with thirteen using area under the ROC curve whilst calibration was assessed in three. Two studies performed external validation. None described the final model sufficiently well to reproduce it.The use of ML for predicting stroke outcomes is increasing. However, few met basic reporting standards for clinical prediction tools and none made their models available in a way which could be used or evaluated. Major improvements in ML study conduct and reporting are needed before it can meaningfully be considered for practice." @default.
- W3034655770 created "2020-06-19" @default.
- W3034655770 creator A5012611835 @default.
- W3034655770 creator A5021731520 @default.
- W3034655770 creator A5022381619 @default.
- W3034655770 creator A5026258202 @default.
- W3034655770 creator A5035648750 @default.
- W3034655770 creator A5036860076 @default.
- W3034655770 creator A5046732096 @default.
- W3034655770 creator A5059494163 @default.
- W3034655770 creator A5064898198 @default.
- W3034655770 creator A5083531522 @default.
- W3034655770 date "2020-06-12" @default.
- W3034655770 modified "2023-10-14" @default.
- W3034655770 title "A systematic review of machine learning models for predicting outcomes of stroke with structured data" @default.
- W3034655770 cites W1596201720 @default.
- W3034655770 cites W1828220022 @default.
- W3034655770 cites W1968452917 @default.
- W3034655770 cites W1977098485 @default.
- W3034655770 cites W1994682257 @default.
- W3034655770 cites W1995551949 @default.
- W3034655770 cites W2007872832 @default.
- W3034655770 cites W2015709018 @default.
- W3034655770 cites W2018880002 @default.
- W3034655770 cites W2019982728 @default.
- W3034655770 cites W2053843348 @default.
- W3034655770 cites W2054193584 @default.
- W3034655770 cites W2065974896 @default.
- W3034655770 cites W2071491959 @default.
- W3034655770 cites W2084164487 @default.
- W3034655770 cites W2119910794 @default.
- W3034655770 cites W2154286581 @default.
- W3034655770 cites W2162974025 @default.
- W3034655770 cites W2282524067 @default.
- W3034655770 cites W234640303 @default.
- W3034655770 cites W2407212869 @default.
- W3034655770 cites W2605975631 @default.
- W3034655770 cites W2759511880 @default.
- W3034655770 cites W2760314420 @default.
- W3034655770 cites W2761529114 @default.
- W3034655770 cites W2789970635 @default.
- W3034655770 cites W2791595050 @default.
- W3034655770 cites W2807179733 @default.
- W3034655770 cites W2808437621 @default.
- W3034655770 cites W2893462288 @default.
- W3034655770 cites W2899740939 @default.
- W3034655770 cites W2913997948 @default.
- W3034655770 cites W2921112006 @default.
- W3034655770 cites W2923418412 @default.
- W3034655770 cites W2936038867 @default.
- W3034655770 cites W2937404770 @default.
- W3034655770 cites W2965782433 @default.
- W3034655770 cites W2969097171 @default.
- W3034655770 cites W2969720828 @default.
- W3034655770 cites W4211101039 @default.
- W3034655770 doi "https://doi.org/10.1371/journal.pone.0234722" @default.
- W3034655770 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7292406" @default.
- W3034655770 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32530947" @default.
- W3034655770 hasPublicationYear "2020" @default.
- W3034655770 type Work @default.
- W3034655770 sameAs 3034655770 @default.
- W3034655770 citedByCount "89" @default.
- W3034655770 countsByYear W30346557702020 @default.
- W3034655770 countsByYear W30346557702021 @default.
- W3034655770 countsByYear W30346557702022 @default.
- W3034655770 countsByYear W30346557702023 @default.
- W3034655770 crossrefType "journal-article" @default.
- W3034655770 hasAuthorship W3034655770A5012611835 @default.
- W3034655770 hasAuthorship W3034655770A5021731520 @default.
- W3034655770 hasAuthorship W3034655770A5022381619 @default.
- W3034655770 hasAuthorship W3034655770A5026258202 @default.
- W3034655770 hasAuthorship W3034655770A5035648750 @default.
- W3034655770 hasAuthorship W3034655770A5036860076 @default.
- W3034655770 hasAuthorship W3034655770A5046732096 @default.
- W3034655770 hasAuthorship W3034655770A5059494163 @default.
- W3034655770 hasAuthorship W3034655770A5064898198 @default.
- W3034655770 hasAuthorship W3034655770A5083531522 @default.
- W3034655770 hasBestOaLocation W30346557701 @default.
- W3034655770 hasConcept C105795698 @default.
- W3034655770 hasConcept C119857082 @default.
- W3034655770 hasConcept C127413603 @default.
- W3034655770 hasConcept C129848803 @default.
- W3034655770 hasConcept C142724271 @default.
- W3034655770 hasConcept C154945302 @default.
- W3034655770 hasConcept C15744967 @default.
- W3034655770 hasConcept C169258074 @default.
- W3034655770 hasConcept C17744445 @default.
- W3034655770 hasConcept C180747234 @default.
- W3034655770 hasConcept C189708586 @default.
- W3034655770 hasConcept C199539241 @default.
- W3034655770 hasConcept C2779356329 @default.
- W3034655770 hasConcept C2779473830 @default.
- W3034655770 hasConcept C2780645631 @default.
- W3034655770 hasConcept C33923547 @default.
- W3034655770 hasConcept C41008148 @default.
- W3034655770 hasConcept C45804977 @default.
- W3034655770 hasConcept C50644808 @default.
- W3034655770 hasConcept C535046627 @default.