Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034718782> ?p ?o ?g. }
- W3034718782 endingPage "115183" @default.
- W3034718782 startingPage "115183" @default.
- W3034718782 abstract "This paper applies the computational fluid dynamics (CFD) simulation to study the condensate two-phase thermofluid characteristics of refrigerant HFO-1234yf flowing through horizontal straight and convergent passages for guiding the design of minitube heat exchangers. The theoretical analysis employs the volume-of-fluid (VOF) method to model the progression of film condensation process for determining the distributions of velocity, pressure, temperature, vapor volume fraction and film thickness for liquid-vapor interfacial flows. The Lee model is formulated as a user defined function to treat the phase change effect at the interface. The predictions of heat transfer coefficients and pressure drops agree reasonably well with the measured data from the referencing literature at the mass and heat fluxes of 200–800 kg/m2 s and 9.9–24.3 kW/m2 for validation of the computational model. The simulated results are presented to capture the complex two-phase flow behaviors during the film condensation progression, including the formation of interfacial ripples of annular films, wave-shaped films with elongated necking regions, shedding of liquid ligaments and breakup of these ligaments entrained into the vapor core. The VOF calculations also estimate the average heat transfer coefficient and pressure drop up to 11.3 kW/m2 K and 55.1 kPa at a mass flux of 800 kg/m2 s for the straight tube, showing similar thermal performance to refrigerant HFC-134a reported by open literature. The convergent passage essentially raises the average heat transfer coefficient and pressure drop because of more severe shear stresses over the film surface. The correlations of heat transfer coefficient and pressure drop are compared with CFD predictions for straight and convergent tubes. The performance assessment is thus conducted using the validated correlations to guide the redesign of minitube heat exchangers with HFO1234yf as an alternative refrigerant in various energy systems. Two design changes are presented using HFO1234yf refrigerant to enlarge the total surface area up to 13.49% in straight tubes or broaden the cooling surface area of only 6.4% in convergent tubes for matching the performance of R134a." @default.
- W3034718782 created "2020-06-19" @default.
- W3034718782 creator A5014542137 @default.
- W3034718782 creator A5015823583 @default.
- W3034718782 creator A5040370229 @default.
- W3034718782 creator A5043025334 @default.
- W3034718782 creator A5055188556 @default.
- W3034718782 date "2020-09-01" @default.
- W3034718782 modified "2023-10-01" @default.
- W3034718782 title "Heat transfer and pressure drop of film condensation in a horizontal minitube for HFO1234yf refrigerant" @default.
- W3034718782 cites W1977056671 @default.
- W3034718782 cites W1978188790 @default.
- W3034718782 cites W1981401379 @default.
- W3034718782 cites W1989461054 @default.
- W3034718782 cites W1995066522 @default.
- W3034718782 cites W1999414045 @default.
- W3034718782 cites W2000945154 @default.
- W3034718782 cites W2001824705 @default.
- W3034718782 cites W2002825244 @default.
- W3034718782 cites W2006018242 @default.
- W3034718782 cites W2010701292 @default.
- W3034718782 cites W2015327278 @default.
- W3034718782 cites W2016621584 @default.
- W3034718782 cites W2023791964 @default.
- W3034718782 cites W2029848557 @default.
- W3034718782 cites W2033698772 @default.
- W3034718782 cites W2035410345 @default.
- W3034718782 cites W2040636362 @default.
- W3034718782 cites W2046204930 @default.
- W3034718782 cites W2056320887 @default.
- W3034718782 cites W2059555786 @default.
- W3034718782 cites W2064180392 @default.
- W3034718782 cites W2066903981 @default.
- W3034718782 cites W2068365042 @default.
- W3034718782 cites W2068504746 @default.
- W3034718782 cites W2074045082 @default.
- W3034718782 cites W2080922987 @default.
- W3034718782 cites W2085002913 @default.
- W3034718782 cites W2086616208 @default.
- W3034718782 cites W2091020208 @default.
- W3034718782 cites W2095159825 @default.
- W3034718782 cites W2111837987 @default.
- W3034718782 cites W2164347395 @default.
- W3034718782 cites W2220073268 @default.
- W3034718782 cites W2270313518 @default.
- W3034718782 cites W2317478898 @default.
- W3034718782 cites W2318010692 @default.
- W3034718782 cites W2328514275 @default.
- W3034718782 cites W2416007876 @default.
- W3034718782 cites W2434280514 @default.
- W3034718782 cites W2561512075 @default.
- W3034718782 cites W2617993814 @default.
- W3034718782 cites W2618657902 @default.
- W3034718782 cites W2765933468 @default.
- W3034718782 cites W2790964154 @default.
- W3034718782 cites W2882982708 @default.
- W3034718782 cites W2901667922 @default.
- W3034718782 doi "https://doi.org/10.1016/j.apenergy.2020.115183" @default.
- W3034718782 hasPublicationYear "2020" @default.
- W3034718782 type Work @default.
- W3034718782 sameAs 3034718782 @default.
- W3034718782 citedByCount "13" @default.
- W3034718782 countsByYear W30347187822020 @default.
- W3034718782 countsByYear W30347187822021 @default.
- W3034718782 countsByYear W30347187822022 @default.
- W3034718782 countsByYear W30347187822023 @default.
- W3034718782 crossrefType "journal-article" @default.
- W3034718782 hasAuthorship W3034718782A5014542137 @default.
- W3034718782 hasAuthorship W3034718782A5015823583 @default.
- W3034718782 hasAuthorship W3034718782A5040370229 @default.
- W3034718782 hasAuthorship W3034718782A5043025334 @default.
- W3034718782 hasAuthorship W3034718782A5055188556 @default.
- W3034718782 hasConcept C107706546 @default.
- W3034718782 hasConcept C114088122 @default.
- W3034718782 hasConcept C121332964 @default.
- W3034718782 hasConcept C127210992 @default.
- W3034718782 hasConcept C185592680 @default.
- W3034718782 hasConcept C192562407 @default.
- W3034718782 hasConcept C199499590 @default.
- W3034718782 hasConcept C200093464 @default.
- W3034718782 hasConcept C2777871205 @default.
- W3034718782 hasConcept C29700514 @default.
- W3034718782 hasConcept C50517652 @default.
- W3034718782 hasConcept C57879066 @default.
- W3034718782 hasConcept C97355855 @default.
- W3034718782 hasConceptScore W3034718782C107706546 @default.
- W3034718782 hasConceptScore W3034718782C114088122 @default.
- W3034718782 hasConceptScore W3034718782C121332964 @default.
- W3034718782 hasConceptScore W3034718782C127210992 @default.
- W3034718782 hasConceptScore W3034718782C185592680 @default.
- W3034718782 hasConceptScore W3034718782C192562407 @default.
- W3034718782 hasConceptScore W3034718782C199499590 @default.
- W3034718782 hasConceptScore W3034718782C200093464 @default.
- W3034718782 hasConceptScore W3034718782C2777871205 @default.
- W3034718782 hasConceptScore W3034718782C29700514 @default.
- W3034718782 hasConceptScore W3034718782C50517652 @default.
- W3034718782 hasConceptScore W3034718782C57879066 @default.
- W3034718782 hasConceptScore W3034718782C97355855 @default.