Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034726419> ?p ?o ?g. }
- W3034726419 endingPage "28" @default.
- W3034726419 startingPage "22" @default.
- W3034726419 abstract "Transcatheter mitral valve repair (TMVR) utilization has increased significantly in the United States over the last years. Yet, a risk-prediction tool for adverse events has not been developed. We aimed to generate a machine-learning-based algorithm to predict in-hospital mortality after TMVR.Patients who underwent TMVR from 2012 through 2015 were identified using the National Inpatient Sample database. The study population was randomly divided into a training set (n = 636) and a testing set (n = 213). Prediction models for in-hospital mortality were obtained using five supervised machine-learning classifiers.A total of 849 TMVRs were analyzed in our study. The overall in-hospital mortality was 3.1%. A naïve Bayes (NB) model had the best discrimination for fifteen variables, with an area under the receiver-operating curve (AUC) of 0.83 (95% CI, 0.80-0.87), compared to 0.77 for logistic regression (95% CI, 0.58-0.95), 0.73 for an artificial neural network (95% CI, 0.55-0.91), and 0.67 for both a random forest and a support-vector machine (95% CI, 0.47-0.87). History of coronary artery disease, of chronic kidney disease, and smoking were the three most significant predictors of in-hospital mortality.We developed a robust machine-learning-derived model to predict in-hospital mortality in patients undergoing TMVR. This model is promising for decision-making and deserves further clinical validation." @default.
- W3034726419 created "2020-06-19" @default.
- W3034726419 creator A5013131907 @default.
- W3034726419 creator A5015322806 @default.
- W3034726419 creator A5026943594 @default.
- W3034726419 creator A5031413575 @default.
- W3034726419 creator A5035487004 @default.
- W3034726419 creator A5036421688 @default.
- W3034726419 creator A5047708371 @default.
- W3034726419 creator A5048456298 @default.
- W3034726419 creator A5048975433 @default.
- W3034726419 creator A5053165842 @default.
- W3034726419 creator A5054565426 @default.
- W3034726419 creator A5060743527 @default.
- W3034726419 creator A5067628785 @default.
- W3034726419 creator A5069212078 @default.
- W3034726419 creator A5069307520 @default.
- W3034726419 creator A5070488097 @default.
- W3034726419 creator A5081523563 @default.
- W3034726419 creator A5083826257 @default.
- W3034726419 creator A5091206616 @default.
- W3034726419 date "2021-01-01" @default.
- W3034726419 modified "2023-10-18" @default.
- W3034726419 title "Machine-Learning-Based In-Hospital Mortality Prediction for Transcatheter Mitral Valve Repair in the United States" @default.
- W3034726419 cites W112585285 @default.
- W3034726419 cites W1596717185 @default.
- W3034726419 cites W1702900437 @default.
- W3034726419 cites W2005359002 @default.
- W3034726419 cites W2057780602 @default.
- W3034726419 cites W2087576375 @default.
- W3034726419 cites W2104167780 @default.
- W3034726419 cites W2106089315 @default.
- W3034726419 cites W2122694177 @default.
- W3034726419 cites W2130007894 @default.
- W3034726419 cites W2148143831 @default.
- W3034726419 cites W2177458713 @default.
- W3034726419 cites W2233452031 @default.
- W3034726419 cites W2328176404 @default.
- W3034726419 cites W2587345921 @default.
- W3034726419 cites W2750902029 @default.
- W3034726419 cites W2766625549 @default.
- W3034726419 cites W2780971534 @default.
- W3034726419 cites W2796551297 @default.
- W3034726419 cites W2796837475 @default.
- W3034726419 cites W2889688444 @default.
- W3034726419 cites W2909865572 @default.
- W3034726419 cites W2911964244 @default.
- W3034726419 cites W2914532649 @default.
- W3034726419 cites W2945340840 @default.
- W3034726419 cites W2962412324 @default.
- W3034726419 cites W2981824330 @default.
- W3034726419 cites W62566086 @default.
- W3034726419 doi "https://doi.org/10.1016/j.carrev.2020.06.017" @default.
- W3034726419 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7736498" @default.
- W3034726419 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32591310" @default.
- W3034726419 hasPublicationYear "2021" @default.
- W3034726419 type Work @default.
- W3034726419 sameAs 3034726419 @default.
- W3034726419 citedByCount "19" @default.
- W3034726419 countsByYear W30347264192021 @default.
- W3034726419 countsByYear W30347264192022 @default.
- W3034726419 countsByYear W30347264192023 @default.
- W3034726419 crossrefType "journal-article" @default.
- W3034726419 hasAuthorship W3034726419A5013131907 @default.
- W3034726419 hasAuthorship W3034726419A5015322806 @default.
- W3034726419 hasAuthorship W3034726419A5026943594 @default.
- W3034726419 hasAuthorship W3034726419A5031413575 @default.
- W3034726419 hasAuthorship W3034726419A5035487004 @default.
- W3034726419 hasAuthorship W3034726419A5036421688 @default.
- W3034726419 hasAuthorship W3034726419A5047708371 @default.
- W3034726419 hasAuthorship W3034726419A5048456298 @default.
- W3034726419 hasAuthorship W3034726419A5048975433 @default.
- W3034726419 hasAuthorship W3034726419A5053165842 @default.
- W3034726419 hasAuthorship W3034726419A5054565426 @default.
- W3034726419 hasAuthorship W3034726419A5060743527 @default.
- W3034726419 hasAuthorship W3034726419A5067628785 @default.
- W3034726419 hasAuthorship W3034726419A5069212078 @default.
- W3034726419 hasAuthorship W3034726419A5069307520 @default.
- W3034726419 hasAuthorship W3034726419A5070488097 @default.
- W3034726419 hasAuthorship W3034726419A5081523563 @default.
- W3034726419 hasAuthorship W3034726419A5083826257 @default.
- W3034726419 hasAuthorship W3034726419A5091206616 @default.
- W3034726419 hasBestOaLocation W30347264192 @default.
- W3034726419 hasConcept C119857082 @default.
- W3034726419 hasConcept C126322002 @default.
- W3034726419 hasConcept C151956035 @default.
- W3034726419 hasConcept C154945302 @default.
- W3034726419 hasConcept C164705383 @default.
- W3034726419 hasConcept C2778213512 @default.
- W3034726419 hasConcept C41008148 @default.
- W3034726419 hasConcept C44249647 @default.
- W3034726419 hasConcept C50644808 @default.
- W3034726419 hasConcept C58471807 @default.
- W3034726419 hasConcept C71924100 @default.
- W3034726419 hasConceptScore W3034726419C119857082 @default.
- W3034726419 hasConceptScore W3034726419C126322002 @default.
- W3034726419 hasConceptScore W3034726419C151956035 @default.
- W3034726419 hasConceptScore W3034726419C154945302 @default.