Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034740632> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3034740632 abstract "Real-time monitoring of road traffic variables is essential for any effective control strategy in Intelligent Transportation Systems. Network-wide monitoring has increased importance in the current and future panorama due to the verge of adoption of smart mobility technologies, i.e. monitoring all links in a network is a general desired goal. However, installation and maintenance of sensors across the whole network are not cost-effective. Therefore, traffic networks are frequently suffering from the lack of well-operating and reliable traffic detectors. The paper proposes the employment of neural networks based models to virtualize the measurements on road links without detectors. The proposed method applies the measurements of monitored links as input to the deep learning model in order to estimate virtual measurements on the unmonitored road links. Several neural network models differing in architecture (Artificial Neural Network, Time Lagged Neural Network and Long Short Term Memory Neural Network) have been implemented and their hyper-parameterization were optimized using Bayesian search. The prediction techniques were developed and tested by using microscopic road traffic simulation." @default.
- W3034740632 created "2020-06-19" @default.
- W3034740632 creator A5053968455 @default.
- W3034740632 creator A5055611722 @default.
- W3034740632 date "2019-05-01" @default.
- W3034740632 modified "2023-09-25" @default.
- W3034740632 title "Deep Learning Approach for Spatial Extension of Traffic Sensor Points in Urban Road Network" @default.
- W3034740632 cites W2019663200 @default.
- W3034740632 cites W2028626889 @default.
- W3034740632 cites W2040297119 @default.
- W3034740632 cites W2040956860 @default.
- W3034740632 cites W2064675550 @default.
- W3034740632 cites W2112591985 @default.
- W3034740632 cites W2131241448 @default.
- W3034740632 cites W2133708669 @default.
- W3034740632 cites W2150355110 @default.
- W3034740632 cites W2169389865 @default.
- W3034740632 cites W2169541126 @default.
- W3034740632 cites W2470473420 @default.
- W3034740632 cites W2593744649 @default.
- W3034740632 cites W2613719029 @default.
- W3034740632 cites W2744962509 @default.
- W3034740632 cites W2747135936 @default.
- W3034740632 cites W2799109291 @default.
- W3034740632 cites W2886722935 @default.
- W3034740632 cites W2889793454 @default.
- W3034740632 cites W2903709398 @default.
- W3034740632 cites W651052975 @default.
- W3034740632 doi "https://doi.org/10.1109/saci46893.2019.9111522" @default.
- W3034740632 hasPublicationYear "2019" @default.
- W3034740632 type Work @default.
- W3034740632 sameAs 3034740632 @default.
- W3034740632 citedByCount "0" @default.
- W3034740632 crossrefType "proceedings-article" @default.
- W3034740632 hasAuthorship W3034740632A5053968455 @default.
- W3034740632 hasAuthorship W3034740632A5055611722 @default.
- W3034740632 hasConcept C108583219 @default.
- W3034740632 hasConcept C119857082 @default.
- W3034740632 hasConcept C127413603 @default.
- W3034740632 hasConcept C154945302 @default.
- W3034740632 hasConcept C158379750 @default.
- W3034740632 hasConcept C176715033 @default.
- W3034740632 hasConcept C201100257 @default.
- W3034740632 hasConcept C22212356 @default.
- W3034740632 hasConcept C2779888511 @default.
- W3034740632 hasConcept C2780580889 @default.
- W3034740632 hasConcept C31258907 @default.
- W3034740632 hasConcept C41008148 @default.
- W3034740632 hasConcept C50644808 @default.
- W3034740632 hasConcept C64093975 @default.
- W3034740632 hasConcept C79403827 @default.
- W3034740632 hasConcept C94168897 @default.
- W3034740632 hasConceptScore W3034740632C108583219 @default.
- W3034740632 hasConceptScore W3034740632C119857082 @default.
- W3034740632 hasConceptScore W3034740632C127413603 @default.
- W3034740632 hasConceptScore W3034740632C154945302 @default.
- W3034740632 hasConceptScore W3034740632C158379750 @default.
- W3034740632 hasConceptScore W3034740632C176715033 @default.
- W3034740632 hasConceptScore W3034740632C201100257 @default.
- W3034740632 hasConceptScore W3034740632C22212356 @default.
- W3034740632 hasConceptScore W3034740632C2779888511 @default.
- W3034740632 hasConceptScore W3034740632C2780580889 @default.
- W3034740632 hasConceptScore W3034740632C31258907 @default.
- W3034740632 hasConceptScore W3034740632C41008148 @default.
- W3034740632 hasConceptScore W3034740632C50644808 @default.
- W3034740632 hasConceptScore W3034740632C64093975 @default.
- W3034740632 hasConceptScore W3034740632C79403827 @default.
- W3034740632 hasConceptScore W3034740632C94168897 @default.
- W3034740632 hasLocation W30347406321 @default.
- W3034740632 hasOpenAccess W3034740632 @default.
- W3034740632 hasPrimaryLocation W30347406321 @default.
- W3034740632 hasRelatedWork W1509749701 @default.
- W3034740632 hasRelatedWork W2059848329 @default.
- W3034740632 hasRelatedWork W2089562599 @default.
- W3034740632 hasRelatedWork W2470473420 @default.
- W3034740632 hasRelatedWork W2558469811 @default.
- W3034740632 hasRelatedWork W2579852174 @default.
- W3034740632 hasRelatedWork W2586835517 @default.
- W3034740632 hasRelatedWork W2768287877 @default.
- W3034740632 hasRelatedWork W2806123914 @default.
- W3034740632 hasRelatedWork W2886722935 @default.
- W3034740632 hasRelatedWork W2904346290 @default.
- W3034740632 hasRelatedWork W2967772674 @default.
- W3034740632 hasRelatedWork W2999147263 @default.
- W3034740632 hasRelatedWork W3021810927 @default.
- W3034740632 hasRelatedWork W3123006215 @default.
- W3034740632 hasRelatedWork W3131310266 @default.
- W3034740632 hasRelatedWork W3139828765 @default.
- W3034740632 hasRelatedWork W3158058297 @default.
- W3034740632 hasRelatedWork W3161393127 @default.
- W3034740632 hasRelatedWork W3195970356 @default.
- W3034740632 isParatext "false" @default.
- W3034740632 isRetracted "false" @default.
- W3034740632 magId "3034740632" @default.
- W3034740632 workType "article" @default.