Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034745079> ?p ?o ?g. }
- W3034745079 endingPage "594" @default.
- W3034745079 startingPage "577" @default.
- W3034745079 abstract "Inland Marsh (IM) is a type of wetland characterized by the presence of non-woody plants as grasses, reeds or sedges, with a water surface smaller than 25% of the area. Historically, these areas have been suffering impacts related to pollution by urban, industrial and agrochemical waste, as well as drainage for agriculture. The IM delineation allows to understand the vegetation and hydrodynamic dynamics and also to monitor the degradation caused by human-induced activities. This work aimed to compare four machine learning algorithms (classification and regression tree (CART), artificial neural network (ANN), random forest (RF), and k-nearest neighbors (k-NN)) using active and passive remote sensing data in order to address the following questions: (1) which of the four machine learning methods has the greatest potential for inland marshes delineation? (2) are SAR features more important for inland marshes delineation than optical features? and (3) what are the most accurate classification parameters for inland marshes delineation? To address these questions, we used data from Sentinel 1A and Alos Palsar I (SAR) and Sentinel 2A (optical) sensors, in a geographic object-based image analysis (GEOBIA) approach. In addition, we performed a vectorization of a 1975 Brazilian Army topographic chart (first official document presenting marsh boundaries) in order to quantify the marsh area losses between 1975 and 2018 by comparing it with a Sentinel 2A image. Our results showed that the method with the highest overall accuracy was k-NN, with 98.5%. The accuracies for the RF, ANN, and CART methods were 98.3%, 96.0% and 95.5%, respectively. The four classifiers presented accuracies exceeding 95%, showing that all methods have potential for inland marsh delineation. However, we note that the classification results have a great dependence on the input layers. Regarding the importance of the features, SAR images were more important in RF and ANN models, especially in the HV, HV + VH and VH channels of the Alos Palsar I L-band satellite, while spectral indices from optical images were more important in the marshes delineation with the CART method. In addition, we found that the CART and ANN methods presented the largest variations of the overall accuracy (OA) in relation to the different parameters tested. The multi-sensor approach was critical for the high OA values found in the IM delineation (> 95%). The four machine learning methods can be accurately applied for IM delineation, acting as an important low-cost tool for monitoring and managing these environments, in the face of advances in agriculture, soil degradation and pollution of water resources due to agrochemical dumping." @default.
- W3034745079 created "2020-06-19" @default.
- W3034745079 creator A5043986182 @default.
- W3034745079 creator A5045898538 @default.
- W3034745079 creator A5064951916 @default.
- W3034745079 creator A5074233530 @default.
- W3034745079 creator A5088961078 @default.
- W3034745079 date "2020-06-08" @default.
- W3034745079 modified "2023-10-03" @default.
- W3034745079 title "A comparison of data mining techniques and multi-sensor analysis for inland marshes delineation" @default.
- W3034745079 cites W1600748391 @default.
- W3034745079 cites W1602811519 @default.
- W3034745079 cites W1606999916 @default.
- W3034745079 cites W1610015390 @default.
- W3034745079 cites W1707683952 @default.
- W3034745079 cites W1827261456 @default.
- W3034745079 cites W1951989023 @default.
- W3034745079 cites W1964217023 @default.
- W3034745079 cites W1965920920 @default.
- W3034745079 cites W1970101073 @default.
- W3034745079 cites W1971832606 @default.
- W3034745079 cites W1978487267 @default.
- W3034745079 cites W1978617972 @default.
- W3034745079 cites W1984667420 @default.
- W3034745079 cites W1990244654 @default.
- W3034745079 cites W1990606352 @default.
- W3034745079 cites W2000613913 @default.
- W3034745079 cites W2001052798 @default.
- W3034745079 cites W2008829567 @default.
- W3034745079 cites W2012014449 @default.
- W3034745079 cites W2015258183 @default.
- W3034745079 cites W2022244514 @default.
- W3034745079 cites W2027580473 @default.
- W3034745079 cites W2039067477 @default.
- W3034745079 cites W2047692126 @default.
- W3034745079 cites W2059967386 @default.
- W3034745079 cites W2061736504 @default.
- W3034745079 cites W2070907409 @default.
- W3034745079 cites W2077509829 @default.
- W3034745079 cites W2080441468 @default.
- W3034745079 cites W2092295617 @default.
- W3034745079 cites W2096335861 @default.
- W3034745079 cites W2101678239 @default.
- W3034745079 cites W2103079830 @default.
- W3034745079 cites W2104896032 @default.
- W3034745079 cites W2112117950 @default.
- W3034745079 cites W2115076670 @default.
- W3034745079 cites W2126699720 @default.
- W3034745079 cites W2133690993 @default.
- W3034745079 cites W2133797290 @default.
- W3034745079 cites W2134235364 @default.
- W3034745079 cites W2139741891 @default.
- W3034745079 cites W2163307144 @default.
- W3034745079 cites W2163654989 @default.
- W3034745079 cites W2166822978 @default.
- W3034745079 cites W2171979590 @default.
- W3034745079 cites W2178710310 @default.
- W3034745079 cites W2192289608 @default.
- W3034745079 cites W2209551033 @default.
- W3034745079 cites W2269238613 @default.
- W3034745079 cites W2279425969 @default.
- W3034745079 cites W2286994113 @default.
- W3034745079 cites W2346650846 @default.
- W3034745079 cites W235203688 @default.
- W3034745079 cites W2462494183 @default.
- W3034745079 cites W2505820723 @default.
- W3034745079 cites W2573415952 @default.
- W3034745079 cites W2583115410 @default.
- W3034745079 cites W2653148934 @default.
- W3034745079 cites W2765535564 @default.
- W3034745079 cites W2766217420 @default.
- W3034745079 cites W2766550705 @default.
- W3034745079 cites W2770888309 @default.
- W3034745079 cites W2775069442 @default.
- W3034745079 cites W2777410146 @default.
- W3034745079 cites W2790067818 @default.
- W3034745079 cites W2806897572 @default.
- W3034745079 cites W2888812454 @default.
- W3034745079 cites W2902060107 @default.
- W3034745079 cites W2904142556 @default.
- W3034745079 cites W2905768902 @default.
- W3034745079 cites W2911964244 @default.
- W3034745079 cites W2912391877 @default.
- W3034745079 cites W2934741600 @default.
- W3034745079 cites W2951027871 @default.
- W3034745079 cites W2955716942 @default.
- W3034745079 cites W2968716196 @default.
- W3034745079 cites W2969375592 @default.
- W3034745079 cites W3021417852 @default.
- W3034745079 cites W3148010252 @default.
- W3034745079 cites W4205930639 @default.
- W3034745079 cites W4213102919 @default.
- W3034745079 cites W4213422112 @default.
- W3034745079 cites W4301971222 @default.
- W3034745079 doi "https://doi.org/10.1007/s11273-020-09731-2" @default.
- W3034745079 hasPublicationYear "2020" @default.
- W3034745079 type Work @default.
- W3034745079 sameAs 3034745079 @default.