Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034781159> ?p ?o ?g. }
- W3034781159 abstract "Abstract Background In meta-analyses of a binary outcome, double zero events in some studies cause a critical methodology problem. The generalized linear mixed model (GLMM) has been proposed as a valid statistical tool for pooling such data. Three parameter estimation methods, including the Laplace approximation (LA), penalized quasi-likelihood (PQL) and adaptive Gauss–Hermite quadrature (AGHQ) were frequently used in the GLMM. However, the performance of GLMM via these estimation methods is unclear in meta-analysis with zero events. Methods A simulation study was conducted to compare the performance. We fitted five random-effects GLMMs and estimated the results through the LA, PQL and AGHQ methods, respectively. Each scenario conducted 20,000 simulation iterations. The data from Cochrane Database of Systematic Reviews were collected to form the simulation settings. The estimation methods were compared in terms of the convergence rate, bias, mean square error, and coverage probability. Results Our results suggested that when the total events were insufficient in either of the arms, the GLMMs did not show good point estimation to pool studies of rare events. The AGHQ method did not show better properties than the LA estimation in terms of convergence rate, bias, coverage, and possibility to produce very large odds ratios. In addition, although the PQL had some advantages, it was not the preferred option due to its low convergence rate in some situations, and the suboptimal point and variance estimation compared to the LA. Conclusion The GLMM is an alternative for meta-analysis of rare events and is especially useful in the presence of zero-events studies, while at least 10 total events in both arms is recommended when employing GLMM for meta-analysis. The penalized quasi-likelihood and adaptive Gauss–Hermite quadrature are not superior to the Laplace approximation for rare events and thus they are not recommended." @default.
- W3034781159 created "2020-06-19" @default.
- W3034781159 creator A5000639751 @default.
- W3034781159 creator A5030533194 @default.
- W3034781159 creator A5080535430 @default.
- W3034781159 creator A5086774720 @default.
- W3034781159 creator A5090429810 @default.
- W3034781159 date "2020-06-11" @default.
- W3034781159 modified "2023-10-18" @default.
- W3034781159 title "Laplace approximation, penalized quasi-likelihood, and adaptive Gauss–Hermite quadrature for generalized linear mixed models: towards meta-analysis of binary outcome with sparse data" @default.
- W3034781159 cites W1951724000 @default.
- W3034781159 cites W1966953116 @default.
- W3034781159 cites W1989782940 @default.
- W3034781159 cites W1996208018 @default.
- W3034781159 cites W2004738646 @default.
- W3034781159 cites W2031780439 @default.
- W3034781159 cites W2077165978 @default.
- W3034781159 cites W2107328434 @default.
- W3034781159 cites W2128076015 @default.
- W3034781159 cites W2142614828 @default.
- W3034781159 cites W2147468991 @default.
- W3034781159 cites W2148361291 @default.
- W3034781159 cites W2155988679 @default.
- W3034781159 cites W2170952317 @default.
- W3034781159 cites W2588671950 @default.
- W3034781159 cites W2773139475 @default.
- W3034781159 cites W2783147278 @default.
- W3034781159 cites W2790662877 @default.
- W3034781159 cites W2801697966 @default.
- W3034781159 cites W2909849393 @default.
- W3034781159 cites W2921119533 @default.
- W3034781159 cites W3014456301 @default.
- W3034781159 cites W3098865414 @default.
- W3034781159 cites W3125937743 @default.
- W3034781159 doi "https://doi.org/10.1186/s12874-020-01035-6" @default.
- W3034781159 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7296731" @default.
- W3034781159 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32539721" @default.
- W3034781159 hasPublicationYear "2020" @default.
- W3034781159 type Work @default.
- W3034781159 sameAs 3034781159 @default.
- W3034781159 citedByCount "28" @default.
- W3034781159 countsByYear W30347811592020 @default.
- W3034781159 countsByYear W30347811592021 @default.
- W3034781159 countsByYear W30347811592022 @default.
- W3034781159 countsByYear W30347811592023 @default.
- W3034781159 crossrefType "journal-article" @default.
- W3034781159 hasAuthorship W3034781159A5000639751 @default.
- W3034781159 hasAuthorship W3034781159A5030533194 @default.
- W3034781159 hasAuthorship W3034781159A5080535430 @default.
- W3034781159 hasAuthorship W3034781159A5086774720 @default.
- W3034781159 hasAuthorship W3034781159A5090429810 @default.
- W3034781159 hasBestOaLocation W30347811591 @default.
- W3034781159 hasConcept C100906024 @default.
- W3034781159 hasConcept C105795698 @default.
- W3034781159 hasConcept C107673813 @default.
- W3034781159 hasConcept C126322002 @default.
- W3034781159 hasConcept C134306372 @default.
- W3034781159 hasConcept C153720581 @default.
- W3034781159 hasConcept C167196314 @default.
- W3034781159 hasConcept C167590341 @default.
- W3034781159 hasConcept C168743327 @default.
- W3034781159 hasConcept C22243797 @default.
- W3034781159 hasConcept C27016315 @default.
- W3034781159 hasConcept C28826006 @default.
- W3034781159 hasConcept C33643355 @default.
- W3034781159 hasConcept C33923547 @default.
- W3034781159 hasConcept C41426520 @default.
- W3034781159 hasConcept C48265008 @default.
- W3034781159 hasConcept C71924100 @default.
- W3034781159 hasConcept C91025261 @default.
- W3034781159 hasConcept C95190672 @default.
- W3034781159 hasConceptScore W3034781159C100906024 @default.
- W3034781159 hasConceptScore W3034781159C105795698 @default.
- W3034781159 hasConceptScore W3034781159C107673813 @default.
- W3034781159 hasConceptScore W3034781159C126322002 @default.
- W3034781159 hasConceptScore W3034781159C134306372 @default.
- W3034781159 hasConceptScore W3034781159C153720581 @default.
- W3034781159 hasConceptScore W3034781159C167196314 @default.
- W3034781159 hasConceptScore W3034781159C167590341 @default.
- W3034781159 hasConceptScore W3034781159C168743327 @default.
- W3034781159 hasConceptScore W3034781159C22243797 @default.
- W3034781159 hasConceptScore W3034781159C27016315 @default.
- W3034781159 hasConceptScore W3034781159C28826006 @default.
- W3034781159 hasConceptScore W3034781159C33643355 @default.
- W3034781159 hasConceptScore W3034781159C33923547 @default.
- W3034781159 hasConceptScore W3034781159C41426520 @default.
- W3034781159 hasConceptScore W3034781159C48265008 @default.
- W3034781159 hasConceptScore W3034781159C71924100 @default.
- W3034781159 hasConceptScore W3034781159C91025261 @default.
- W3034781159 hasConceptScore W3034781159C95190672 @default.
- W3034781159 hasIssue "1" @default.
- W3034781159 hasLocation W30347811591 @default.
- W3034781159 hasLocation W30347811592 @default.
- W3034781159 hasLocation W30347811593 @default.
- W3034781159 hasLocation W30347811594 @default.
- W3034781159 hasLocation W30347811595 @default.
- W3034781159 hasOpenAccess W3034781159 @default.
- W3034781159 hasPrimaryLocation W30347811591 @default.
- W3034781159 hasRelatedWork W1775496567 @default.
- W3034781159 hasRelatedWork W1965037383 @default.