Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034784367> ?p ?o ?g. }
- W3034784367 endingPage "111937" @default.
- W3034784367 startingPage "111937" @default.
- W3034784367 abstract "Mediterranean-climate oak woodlands are prized for their biodiversity, aesthetics, and ecosystem services. Conservation and maintenance of these landscapes requires accurate observations of both present and historic conditions capable of spanning millions of hectares. Decameter optical satellite image time series have the observational coverage to meet this need, with almost 40 years of intercalibrated global observations from the Landsat program alone. However, the optimal approach to leverage these observations for oak ecosystem monitoring remains elusive. Temporal mixture models (TMMs) may offer a solution. TMMs use a linear inverse model based on temporal endmembers (tEMs) chosen to optimize both parsimony and information content by 1) possessing clear biophysical meaning, and 2) accurately representing the variance structure of the observations in the temporal feature space (TFS) composed of low-order Principal Components. We apply this approach to oak woodlands of the California Sierra Nevada foothills. Low-order TFS structure across the ≈1200 km2 study area is consistently bounded by 4 tEM phenologies: annual grasses, evergreen perennials, deciduous perennials + shadow, and unvegetated areas. Satellite-based tEM phenologies correspond to ground-based PhenoCam time series (correlations 0.8 to 0.9). Systematic temporal decimation is conducted to simulate years with varying numbers of cloud free measurements. Fractional cover of temporal endmembers is observed to scale linearly using as few as 6 images per year and coarse feature space topology is retained with as few as 4 well-timed images per year. In comparing 10 m versus 30 m pixel resolution, linear scaling is observed with correlations of 0.78–0.95. Comparison of 10 m Sentinel-2 and LiDAR-derived tree cover estimates at San Joaquin Experimental Range shows a correlation of 0.74. Visual orthophoto validation shows accuracies of annual, deciduous, and evergreen cover fractions of 74–88% (n = 102). Multi-year analysis of August imagery at Sequoia National Park to investigate dynamics associated with the 2012–2016 drought reveals 5 tEMs corresponding to: steady growth, steady decline, early decline then regrowth, persistent vegetation, and no vegetation. Validation images are sparse, but where available show accuracies in the 88 to 91% range for decrease, growth, and persistently vegetated multiyear endmembers (n = 102). Decreases are observed in areas with oak mortality documented in a recent field-based study. Overall, our results suggest the TMM approach has promise as an accurate, explainable, and linearly scalable method for retrospective analysis and prospective monitoring of Mediterranean-climate oak landscapes." @default.
- W3034784367 created "2020-06-19" @default.
- W3034784367 creator A5066696545 @default.
- W3034784367 creator A5087826848 @default.
- W3034784367 date "2020-09-01" @default.
- W3034784367 modified "2023-09-27" @default.
- W3034784367 title "Scalable mapping and monitoring of Mediterranean-climate oak landscapes with temporal mixture models" @default.
- W3034784367 cites W1537844550 @default.
- W3034784367 cites W1977338552 @default.
- W3034784367 cites W1997309697 @default.
- W3034784367 cites W1997727596 @default.
- W3034784367 cites W2007582395 @default.
- W3034784367 cites W2016836816 @default.
- W3034784367 cites W2017683517 @default.
- W3034784367 cites W2017972218 @default.
- W3034784367 cites W2025761833 @default.
- W3034784367 cites W2029759810 @default.
- W3034784367 cites W2034955585 @default.
- W3034784367 cites W2035234551 @default.
- W3034784367 cites W2036745212 @default.
- W3034784367 cites W2038353908 @default.
- W3034784367 cites W2049233123 @default.
- W3034784367 cites W2050111191 @default.
- W3034784367 cites W2056435747 @default.
- W3034784367 cites W2060384859 @default.
- W3034784367 cites W2062318104 @default.
- W3034784367 cites W2077046239 @default.
- W3034784367 cites W2087683803 @default.
- W3034784367 cites W2098367044 @default.
- W3034784367 cites W2098966209 @default.
- W3034784367 cites W2100524057 @default.
- W3034784367 cites W2100967854 @default.
- W3034784367 cites W2107564481 @default.
- W3034784367 cites W2108493207 @default.
- W3034784367 cites W2116309433 @default.
- W3034784367 cites W2117706739 @default.
- W3034784367 cites W2141756196 @default.
- W3034784367 cites W2150084011 @default.
- W3034784367 cites W2161336494 @default.
- W3034784367 cites W2162348455 @default.
- W3034784367 cites W2169687028 @default.
- W3034784367 cites W2187803035 @default.
- W3034784367 cites W2214925434 @default.
- W3034784367 cites W2522055505 @default.
- W3034784367 cites W2592471618 @default.
- W3034784367 cites W2783132117 @default.
- W3034784367 cites W2790246883 @default.
- W3034784367 cites W2793197903 @default.
- W3034784367 cites W2796980406 @default.
- W3034784367 cites W2889601522 @default.
- W3034784367 cites W2897285410 @default.
- W3034784367 cites W2909472882 @default.
- W3034784367 cites W2936514808 @default.
- W3034784367 cites W2963081958 @default.
- W3034784367 cites W2963439497 @default.
- W3034784367 cites W2972049585 @default.
- W3034784367 cites W2979348177 @default.
- W3034784367 cites W2981019214 @default.
- W3034784367 cites W2998226466 @default.
- W3034784367 cites W3001770025 @default.
- W3034784367 cites W3006294368 @default.
- W3034784367 doi "https://doi.org/10.1016/j.rse.2020.111937" @default.
- W3034784367 hasPublicationYear "2020" @default.
- W3034784367 type Work @default.
- W3034784367 sameAs 3034784367 @default.
- W3034784367 citedByCount "15" @default.
- W3034784367 countsByYear W30347843672021 @default.
- W3034784367 countsByYear W30347843672022 @default.
- W3034784367 countsByYear W30347843672023 @default.
- W3034784367 crossrefType "journal-article" @default.
- W3034784367 hasAuthorship W3034784367A5066696545 @default.
- W3034784367 hasAuthorship W3034784367A5087826848 @default.
- W3034784367 hasBestOaLocation W30347843672 @default.
- W3034784367 hasConcept C111919701 @default.
- W3034784367 hasConcept C205649164 @default.
- W3034784367 hasConcept C206887242 @default.
- W3034784367 hasConcept C39432304 @default.
- W3034784367 hasConcept C41008148 @default.
- W3034784367 hasConcept C62649853 @default.
- W3034784367 hasConcept C79974875 @default.
- W3034784367 hasConceptScore W3034784367C111919701 @default.
- W3034784367 hasConceptScore W3034784367C205649164 @default.
- W3034784367 hasConceptScore W3034784367C206887242 @default.
- W3034784367 hasConceptScore W3034784367C39432304 @default.
- W3034784367 hasConceptScore W3034784367C41008148 @default.
- W3034784367 hasConceptScore W3034784367C62649853 @default.
- W3034784367 hasConceptScore W3034784367C79974875 @default.
- W3034784367 hasFunder F4320337817 @default.
- W3034784367 hasLocation W30347843671 @default.
- W3034784367 hasLocation W30347843672 @default.
- W3034784367 hasOpenAccess W3034784367 @default.
- W3034784367 hasPrimaryLocation W30347843671 @default.
- W3034784367 hasRelatedWork W1964024921 @default.
- W3034784367 hasRelatedWork W2022420161 @default.
- W3034784367 hasRelatedWork W2037995797 @default.
- W3034784367 hasRelatedWork W2116047388 @default.
- W3034784367 hasRelatedWork W2126095845 @default.
- W3034784367 hasRelatedWork W2169359701 @default.