Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034786541> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3034786541 abstract "Deep neural networks (DNNs) have revolutionized the field of dermoscopy image analysis. Systems based on DNNs are able to achieve impressive diagnostic performances, even outperforming experienced dermatologists. However, DNNs strongly rely on the quantity and quality of the training data. Real world data sets, including those related to dermoscopy, are often severely imbalanced and of reduced dimensions. Thus, models trained on these data sets typically become biased and fail to generalize well to new images. Sample weighting strategies have been proposed to overcome the previous limitations with promising results. Nonetheless, they have been poorly investigated in the context of dermoscopy image analysis. This paper addresses this issue through the extensive comparison of several sample weighting methods, namely class balance and curriculum learning. The results show that each sample weighting strategy influences the performance of the model in different ways, with most finding a compromise between correctly classifying the most common classes or biasing the model towards the less represented classes. Furthermore, the features learned by each model differ significantly, depending on the training strategy." @default.
- W3034786541 created "2020-06-19" @default.
- W3034786541 creator A5018897159 @default.
- W3034786541 creator A5074571088 @default.
- W3034786541 date "2020-06-01" @default.
- W3034786541 modified "2023-09-27" @default.
- W3034786541 title "How Important Is Each Dermoscopy Image?" @default.
- W3034786541 cites W1533970595 @default.
- W3034786541 cites W1686810756 @default.
- W3034786541 cites W2753300133 @default.
- W3034786541 cites W2768237417 @default.
- W3034786541 cites W2794302998 @default.
- W3034786541 cites W2808402517 @default.
- W3034786541 cites W2890655382 @default.
- W3034786541 cites W2892283076 @default.
- W3034786541 cites W2911818805 @default.
- W3034786541 cites W2919115771 @default.
- W3034786541 cites W2932083555 @default.
- W3034786541 cites W2943964494 @default.
- W3034786541 cites W2945008339 @default.
- W3034786541 cites W2948398419 @default.
- W3034786541 cites W2956391471 @default.
- W3034786541 cites W2956801253 @default.
- W3034786541 cites W2963059730 @default.
- W3034786541 cites W2963351448 @default.
- W3034786541 cites W2963516811 @default.
- W3034786541 cites W2963691377 @default.
- W3034786541 cites W2963946669 @default.
- W3034786541 cites W2979553811 @default.
- W3034786541 cites W3102785203 @default.
- W3034786541 doi "https://doi.org/10.1109/cvprw50498.2020.00379" @default.
- W3034786541 hasPublicationYear "2020" @default.
- W3034786541 type Work @default.
- W3034786541 sameAs 3034786541 @default.
- W3034786541 citedByCount "0" @default.
- W3034786541 crossrefType "proceedings-article" @default.
- W3034786541 hasAuthorship W3034786541A5018897159 @default.
- W3034786541 hasAuthorship W3034786541A5074571088 @default.
- W3034786541 hasConcept C115961682 @default.
- W3034786541 hasConcept C119857082 @default.
- W3034786541 hasConcept C124101348 @default.
- W3034786541 hasConcept C126838900 @default.
- W3034786541 hasConcept C153180895 @default.
- W3034786541 hasConcept C154945302 @default.
- W3034786541 hasConcept C166957645 @default.
- W3034786541 hasConcept C183115368 @default.
- W3034786541 hasConcept C185592680 @default.
- W3034786541 hasConcept C198531522 @default.
- W3034786541 hasConcept C202444582 @default.
- W3034786541 hasConcept C205649164 @default.
- W3034786541 hasConcept C2777212361 @default.
- W3034786541 hasConcept C2779343474 @default.
- W3034786541 hasConcept C33923547 @default.
- W3034786541 hasConcept C41008148 @default.
- W3034786541 hasConcept C43617362 @default.
- W3034786541 hasConcept C71924100 @default.
- W3034786541 hasConcept C9652623 @default.
- W3034786541 hasConceptScore W3034786541C115961682 @default.
- W3034786541 hasConceptScore W3034786541C119857082 @default.
- W3034786541 hasConceptScore W3034786541C124101348 @default.
- W3034786541 hasConceptScore W3034786541C126838900 @default.
- W3034786541 hasConceptScore W3034786541C153180895 @default.
- W3034786541 hasConceptScore W3034786541C154945302 @default.
- W3034786541 hasConceptScore W3034786541C166957645 @default.
- W3034786541 hasConceptScore W3034786541C183115368 @default.
- W3034786541 hasConceptScore W3034786541C185592680 @default.
- W3034786541 hasConceptScore W3034786541C198531522 @default.
- W3034786541 hasConceptScore W3034786541C202444582 @default.
- W3034786541 hasConceptScore W3034786541C205649164 @default.
- W3034786541 hasConceptScore W3034786541C2777212361 @default.
- W3034786541 hasConceptScore W3034786541C2779343474 @default.
- W3034786541 hasConceptScore W3034786541C33923547 @default.
- W3034786541 hasConceptScore W3034786541C41008148 @default.
- W3034786541 hasConceptScore W3034786541C43617362 @default.
- W3034786541 hasConceptScore W3034786541C71924100 @default.
- W3034786541 hasConceptScore W3034786541C9652623 @default.
- W3034786541 hasLocation W30347865411 @default.
- W3034786541 hasOpenAccess W3034786541 @default.
- W3034786541 hasPrimaryLocation W30347865411 @default.
- W3034786541 hasRelatedWork W2105373556 @default.
- W3034786541 hasRelatedWork W22587769 @default.
- W3034786541 hasRelatedWork W2790288174 @default.
- W3034786541 hasRelatedWork W2961085424 @default.
- W3034786541 hasRelatedWork W3046775127 @default.
- W3034786541 hasRelatedWork W3107474891 @default.
- W3034786541 hasRelatedWork W4205958290 @default.
- W3034786541 hasRelatedWork W4286629047 @default.
- W3034786541 hasRelatedWork W4289860834 @default.
- W3034786541 hasRelatedWork W4224009465 @default.
- W3034786541 isParatext "false" @default.
- W3034786541 isRetracted "false" @default.
- W3034786541 magId "3034786541" @default.
- W3034786541 workType "article" @default.