Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034851726> ?p ?o ?g. }
Showing items 1 to 56 of
56
with 100 items per page.
- W3034851726 abstract "In this paper a method for chaff and ship discrimination is discussed. The method uses one dimensional range profile data for the input of the convolutional neural network (CNN). The classification results for the CNN running on MATLAB and using Levenberg-Marquardt algorithm are presented for a database composed of 3 types of ship and one type of chaff. This input database is corrupted with different levels of sea clutter in order to conclude on the performance of the CNN in different SCR conditions. The same CNN is also built using Python with Tensorflow backend. The CNN is tested for the database corrupted with sea clutter having a Gaussian spectral function on Python. Classification rates starting from %87 for low SCR (5 dB) up to %99 for high SCR (20 dB) are obtained for the ship and chaff database which are corrupted with sea clutter." @default.
- W3034851726 created "2020-06-19" @default.
- W3034851726 creator A5038331004 @default.
- W3034851726 date "2020-04-01" @default.
- W3034851726 modified "2023-09-27" @default.
- W3034851726 title "Chaff Discrimination Using Convolutional Neural Networks and Range Profile Data" @default.
- W3034851726 cites W1971570296 @default.
- W3034851726 cites W1974480218 @default.
- W3034851726 cites W2020577112 @default.
- W3034851726 cites W2023348117 @default.
- W3034851726 cites W2081111329 @default.
- W3034851726 cites W2085807126 @default.
- W3034851726 cites W2087070363 @default.
- W3034851726 cites W2117461093 @default.
- W3034851726 cites W2145384550 @default.
- W3034851726 cites W2256578114 @default.
- W3034851726 cites W4302769200 @default.
- W3034851726 doi "https://doi.org/10.1109/radar42522.2020.9114645" @default.
- W3034851726 hasPublicationYear "2020" @default.
- W3034851726 type Work @default.
- W3034851726 sameAs 3034851726 @default.
- W3034851726 citedByCount "2" @default.
- W3034851726 countsByYear W30348517262021 @default.
- W3034851726 crossrefType "proceedings-article" @default.
- W3034851726 hasAuthorship W3034851726A5038331004 @default.
- W3034851726 hasConcept C127413603 @default.
- W3034851726 hasConcept C146978453 @default.
- W3034851726 hasConcept C154945302 @default.
- W3034851726 hasConcept C204323151 @default.
- W3034851726 hasConcept C28490314 @default.
- W3034851726 hasConcept C41008148 @default.
- W3034851726 hasConcept C81363708 @default.
- W3034851726 hasConceptScore W3034851726C127413603 @default.
- W3034851726 hasConceptScore W3034851726C146978453 @default.
- W3034851726 hasConceptScore W3034851726C154945302 @default.
- W3034851726 hasConceptScore W3034851726C204323151 @default.
- W3034851726 hasConceptScore W3034851726C28490314 @default.
- W3034851726 hasConceptScore W3034851726C41008148 @default.
- W3034851726 hasConceptScore W3034851726C81363708 @default.
- W3034851726 hasLocation W30348517261 @default.
- W3034851726 hasOpenAccess W3034851726 @default.
- W3034851726 hasPrimaryLocation W30348517261 @default.
- W3034851726 hasRelatedWork W2490962171 @default.
- W3034851726 hasRelatedWork W2521062615 @default.
- W3034851726 hasRelatedWork W2735477435 @default.
- W3034851726 hasRelatedWork W2749468216 @default.
- W3034851726 hasRelatedWork W2901465038 @default.
- W3034851726 hasRelatedWork W2998526951 @default.
- W3034851726 hasRelatedWork W3090822330 @default.
- W3034851726 hasRelatedWork W3119610945 @default.
- W3034851726 hasRelatedWork W3181746755 @default.
- W3034851726 hasRelatedWork W4239686595 @default.
- W3034851726 isParatext "false" @default.
- W3034851726 isRetracted "false" @default.
- W3034851726 magId "3034851726" @default.
- W3034851726 workType "article" @default.