Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034851746> ?p ?o ?g. }
- W3034851746 endingPage "22" @default.
- W3034851746 startingPage "1" @default.
- W3034851746 abstract "Human activity recognition (HAR) plays an irreplaceable role in various applications and has been a prosperous research topic for years. Recent studies show significant progress in feature extraction (i.e., data representation) using deep learning techniques. However, they face significant challenges in capturing multi-modal spatial-temporal patterns from the sensory data, and they commonly overlook the variants between subjects. We propose a Discriminative Adversarial MUlti-view Network (DAMUN) to address the above issues in sensor-based HAR. We first design a multi-view feature extractor to obtain representations of sensory data streams from temporal, spatial, and spatio-temporal views using convolutional networks. Then, we fuse the multi-view representations into a robust joint representation through a trainable Hadamard fusion module, and finally employ a Siamese adversarial network architecture to decrease the variants between the representations of different subjects. We have conducted extensive experiments under an iterative left-one-subject-out setting on three real-world datasets and demonstrated both the effectiveness and robustness of our approach." @default.
- W3034851746 created "2020-06-19" @default.
- W3034851746 creator A5028486493 @default.
- W3034851746 creator A5042824121 @default.
- W3034851746 creator A5050171334 @default.
- W3034851746 creator A5059077090 @default.
- W3034851746 creator A5076107706 @default.
- W3034851746 creator A5078005520 @default.
- W3034851746 date "2020-06-15" @default.
- W3034851746 modified "2023-10-16" @default.
- W3034851746 title "Adversarial Multi-view Networks for Activity Recognition" @default.
- W3034851746 cites W123295786 @default.
- W3034851746 cites W1927052826 @default.
- W3034851746 cites W1968670561 @default.
- W3034851746 cites W1991468035 @default.
- W3034851746 cites W2012557818 @default.
- W3034851746 cites W2017634428 @default.
- W3034851746 cites W2021717943 @default.
- W3034851746 cites W2023302299 @default.
- W3034851746 cites W2026297770 @default.
- W3034851746 cites W2034899024 @default.
- W3034851746 cites W2073401630 @default.
- W3034851746 cites W2099336098 @default.
- W3034851746 cites W2105046342 @default.
- W3034851746 cites W2144348409 @default.
- W3034851746 cites W2270470215 @default.
- W3034851746 cites W2512840713 @default.
- W3034851746 cites W2553915786 @default.
- W3034851746 cites W2593796416 @default.
- W3034851746 cites W2604630936 @default.
- W3034851746 cites W2604847698 @default.
- W3034851746 cites W2780740184 @default.
- W3034851746 cites W2851629429 @default.
- W3034851746 cites W2894702700 @default.
- W3034851746 cites W2895688372 @default.
- W3034851746 cites W2901622658 @default.
- W3034851746 cites W2907706589 @default.
- W3034851746 cites W2963716982 @default.
- W3034851746 cites W2964082633 @default.
- W3034851746 cites W2964249867 @default.
- W3034851746 cites W2964762837 @default.
- W3034851746 cites W2965144482 @default.
- W3034851746 cites W2972559661 @default.
- W3034851746 cites W2972570007 @default.
- W3034851746 doi "https://doi.org/10.1145/3397323" @default.
- W3034851746 hasPublicationYear "2020" @default.
- W3034851746 type Work @default.
- W3034851746 sameAs 3034851746 @default.
- W3034851746 citedByCount "23" @default.
- W3034851746 countsByYear W30348517462020 @default.
- W3034851746 countsByYear W30348517462021 @default.
- W3034851746 countsByYear W30348517462022 @default.
- W3034851746 countsByYear W30348517462023 @default.
- W3034851746 crossrefType "journal-article" @default.
- W3034851746 hasAuthorship W3034851746A5028486493 @default.
- W3034851746 hasAuthorship W3034851746A5042824121 @default.
- W3034851746 hasAuthorship W3034851746A5050171334 @default.
- W3034851746 hasAuthorship W3034851746A5059077090 @default.
- W3034851746 hasAuthorship W3034851746A5076107706 @default.
- W3034851746 hasAuthorship W3034851746A5078005520 @default.
- W3034851746 hasBestOaLocation W30348517462 @default.
- W3034851746 hasConcept C104317684 @default.
- W3034851746 hasConcept C108583219 @default.
- W3034851746 hasConcept C117978034 @default.
- W3034851746 hasConcept C119599485 @default.
- W3034851746 hasConcept C119857082 @default.
- W3034851746 hasConcept C127413603 @default.
- W3034851746 hasConcept C141353440 @default.
- W3034851746 hasConcept C153180895 @default.
- W3034851746 hasConcept C154945302 @default.
- W3034851746 hasConcept C17744445 @default.
- W3034851746 hasConcept C185592680 @default.
- W3034851746 hasConcept C199539241 @default.
- W3034851746 hasConcept C21880701 @default.
- W3034851746 hasConcept C2776359362 @default.
- W3034851746 hasConcept C37736160 @default.
- W3034851746 hasConcept C41008148 @default.
- W3034851746 hasConcept C52622490 @default.
- W3034851746 hasConcept C55493867 @default.
- W3034851746 hasConcept C59404180 @default.
- W3034851746 hasConcept C63479239 @default.
- W3034851746 hasConcept C81363708 @default.
- W3034851746 hasConcept C94625758 @default.
- W3034851746 hasConcept C97931131 @default.
- W3034851746 hasConceptScore W3034851746C104317684 @default.
- W3034851746 hasConceptScore W3034851746C108583219 @default.
- W3034851746 hasConceptScore W3034851746C117978034 @default.
- W3034851746 hasConceptScore W3034851746C119599485 @default.
- W3034851746 hasConceptScore W3034851746C119857082 @default.
- W3034851746 hasConceptScore W3034851746C127413603 @default.
- W3034851746 hasConceptScore W3034851746C141353440 @default.
- W3034851746 hasConceptScore W3034851746C153180895 @default.
- W3034851746 hasConceptScore W3034851746C154945302 @default.
- W3034851746 hasConceptScore W3034851746C17744445 @default.
- W3034851746 hasConceptScore W3034851746C185592680 @default.
- W3034851746 hasConceptScore W3034851746C199539241 @default.
- W3034851746 hasConceptScore W3034851746C21880701 @default.
- W3034851746 hasConceptScore W3034851746C2776359362 @default.