Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034874936> ?p ?o ?g. }
- W3034874936 endingPage "556" @default.
- W3034874936 startingPage "544" @default.
- W3034874936 abstract "Worm gearboxes (WG) are often preferred, because of their high torque, quickly reducing speed capacity and good meshing effectiveness, in many industrial applications. However, WGs may face with some serious problems like high temperature at the speed reducer, gear wearing, pitting, scoring, fractures and damages. In order to prevent any damage, loss of time and money, it is an important issue to detect and classify the faults of WGs and develop the maintenance plans accordingly. The present study addresses the application of the deep learning method, convolutional neural network (CNN), in the field of thermal imaging that were gathered from a test rig operating on different loads and speeds. Deep learning approaches, have proven their powerful capability to exploit faulty information from big data and make intelligently diagnostic decisions. Studies concerning the condition monitoring of WGs in the literature are limited. This is the first study on WGs with infrared thermography rather than vibration and sound measurements which have some deficiencies about hardware requirements, restricted measurement abilities and noisy signals. For comparison, CNN was also trained, with vibration and sound data which were collected from the healthy and faulty WGs. The results of fault diagnosis show that thermal image based CNN model on WG has achieved 100% success rate whereas the vibration performance was 83.3 % and sound performance was 81.7%. As a result, thermal image based CNN model showed a better diagnosing performance than the others for WGs. Moreover, condition monitoring of WGs, can be performed correctly with less measurement costs via thermal imaging methods." @default.
- W3034874936 created "2020-06-19" @default.
- W3034874936 creator A5019734054 @default.
- W3034874936 creator A5049160796 @default.
- W3034874936 creator A5079482287 @default.
- W3034874936 date "2020-09-30" @default.
- W3034874936 modified "2023-09-24" @default.
- W3034874936 title "Worm gear condition monitoring and fault detection from thermal images via deep learning method" @default.
- W3034874936 cites W134650721 @default.
- W3034874936 cites W1838067451 @default.
- W3034874936 cites W187025267 @default.
- W3034874936 cites W1984276989 @default.
- W3034874936 cites W1987581326 @default.
- W3034874936 cites W1989424454 @default.
- W3034874936 cites W1994467461 @default.
- W3034874936 cites W2028119131 @default.
- W3034874936 cites W2088886701 @default.
- W3034874936 cites W2092679592 @default.
- W3034874936 cites W2097117768 @default.
- W3034874936 cites W2104905662 @default.
- W3034874936 cites W2126584714 @default.
- W3034874936 cites W2126780554 @default.
- W3034874936 cites W2159357605 @default.
- W3034874936 cites W2287029277 @default.
- W3034874936 cites W2292244377 @default.
- W3034874936 cites W2337825736 @default.
- W3034874936 cites W2396076036 @default.
- W3034874936 cites W2421935951 @default.
- W3034874936 cites W2440930599 @default.
- W3034874936 cites W2510867243 @default.
- W3034874936 cites W2724573302 @default.
- W3034874936 cites W2735326783 @default.
- W3034874936 cites W2740570963 @default.
- W3034874936 cites W2765085447 @default.
- W3034874936 cites W2771468697 @default.
- W3034874936 cites W2790195878 @default.
- W3034874936 cites W2836688599 @default.
- W3034874936 cites W2901762488 @default.
- W3034874936 cites W2911140209 @default.
- W3034874936 cites W2945330643 @default.
- W3034874936 cites W2950085316 @default.
- W3034874936 cites W2963980515 @default.
- W3034874936 cites W2971479067 @default.
- W3034874936 cites W2971524931 @default.
- W3034874936 cites W2975616625 @default.
- W3034874936 cites W2992740629 @default.
- W3034874936 cites W2995221770 @default.
- W3034874936 cites W2995245305 @default.
- W3034874936 cites W2995447984 @default.
- W3034874936 cites W3010290582 @default.
- W3034874936 cites W4235594362 @default.
- W3034874936 cites W4237523859 @default.
- W3034874936 cites W64138146 @default.
- W3034874936 doi "https://doi.org/10.17531/ein.2020.3.18" @default.
- W3034874936 hasPublicationYear "2020" @default.
- W3034874936 type Work @default.
- W3034874936 sameAs 3034874936 @default.
- W3034874936 citedByCount "19" @default.
- W3034874936 countsByYear W30348749362020 @default.
- W3034874936 countsByYear W30348749362021 @default.
- W3034874936 countsByYear W30348749362022 @default.
- W3034874936 countsByYear W30348749362023 @default.
- W3034874936 crossrefType "journal-article" @default.
- W3034874936 hasAuthorship W3034874936A5019734054 @default.
- W3034874936 hasAuthorship W3034874936A5049160796 @default.
- W3034874936 hasAuthorship W3034874936A5079482287 @default.
- W3034874936 hasBestOaLocation W30348749361 @default.
- W3034874936 hasConcept C108583219 @default.
- W3034874936 hasConcept C120665830 @default.
- W3034874936 hasConcept C121332964 @default.
- W3034874936 hasConcept C127313418 @default.
- W3034874936 hasConcept C127413603 @default.
- W3034874936 hasConcept C152745839 @default.
- W3034874936 hasConcept C153180895 @default.
- W3034874936 hasConcept C154945302 @default.
- W3034874936 hasConcept C158355884 @default.
- W3034874936 hasConcept C165205528 @default.
- W3034874936 hasConcept C172707124 @default.
- W3034874936 hasConcept C175551986 @default.
- W3034874936 hasConcept C202444582 @default.
- W3034874936 hasConcept C2776985865 @default.
- W3034874936 hasConcept C2779222261 @default.
- W3034874936 hasConcept C33923547 @default.
- W3034874936 hasConcept C41008148 @default.
- W3034874936 hasConcept C78519656 @default.
- W3034874936 hasConcept C79403827 @default.
- W3034874936 hasConcept C81363708 @default.
- W3034874936 hasConcept C9652623 @default.
- W3034874936 hasConceptScore W3034874936C108583219 @default.
- W3034874936 hasConceptScore W3034874936C120665830 @default.
- W3034874936 hasConceptScore W3034874936C121332964 @default.
- W3034874936 hasConceptScore W3034874936C127313418 @default.
- W3034874936 hasConceptScore W3034874936C127413603 @default.
- W3034874936 hasConceptScore W3034874936C152745839 @default.
- W3034874936 hasConceptScore W3034874936C153180895 @default.
- W3034874936 hasConceptScore W3034874936C154945302 @default.
- W3034874936 hasConceptScore W3034874936C158355884 @default.
- W3034874936 hasConceptScore W3034874936C165205528 @default.