Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034878846> ?p ?o ?g. }
- W3034878846 endingPage "108071" @default.
- W3034878846 startingPage "108071" @default.
- W3034878846 abstract "Recently, domain adaptation (DA) algorithms have been extensively employed in many fault diagnosis applications. Most prior researches perform well under a general assumption: the distributions of samples are balanced. Nevertheless, the unbalanced distributions of samples are common in practical applications which may cause the performances of these researches drop dramatically. To overcome this deficiency, an enhanced transfer joint matching (TJM) approach is proposed in this paper. Two main contributions are concluded as follows. (1) To our knowledge, it is a pioneering work to apply the maximum variance discrepancy (MVD) for combining with the maximum mean discrepancy (MMD) for the feature matching. (2) The row ℓ2-norm is applied for different domains to improve the generalization ability of the proposed model. In addition, z-score normalization is adopted for the softmax regression classifier. Comprehensive experimental results validate that the enhanced TJM can significantly outperform competitive approached for cross-domain bearing defect diagnosis." @default.
- W3034878846 created "2020-06-19" @default.
- W3034878846 creator A5012062348 @default.
- W3034878846 creator A5037433861 @default.
- W3034878846 creator A5038681658 @default.
- W3034878846 creator A5051324852 @default.
- W3034878846 date "2020-12-01" @default.
- W3034878846 modified "2023-09-30" @default.
- W3034878846 title "Unsupervised domain adaptation via enhanced transfer joint matching for bearing fault diagnosis" @default.
- W3034878846 cites W1749885323 @default.
- W3034878846 cites W2219903032 @default.
- W3034878846 cites W2317595875 @default.
- W3034878846 cites W2342085406 @default.
- W3034878846 cites W2404692435 @default.
- W3034878846 cites W243674440 @default.
- W3034878846 cites W2463319845 @default.
- W3034878846 cites W2520964758 @default.
- W3034878846 cites W2553245249 @default.
- W3034878846 cites W2556013418 @default.
- W3034878846 cites W2582691781 @default.
- W3034878846 cites W2588203738 @default.
- W3034878846 cites W2731372149 @default.
- W3034878846 cites W2786347331 @default.
- W3034878846 cites W2790139773 @default.
- W3034878846 cites W2887782657 @default.
- W3034878846 cites W2898597600 @default.
- W3034878846 cites W2904218127 @default.
- W3034878846 cites W2910979321 @default.
- W3034878846 cites W2914713354 @default.
- W3034878846 cites W2922660557 @default.
- W3034878846 cites W2932115805 @default.
- W3034878846 cites W2939535241 @default.
- W3034878846 cites W2946048316 @default.
- W3034878846 cites W2954335786 @default.
- W3034878846 cites W2963921977 @default.
- W3034878846 cites W2991493462 @default.
- W3034878846 cites W4288076010 @default.
- W3034878846 cites W4293659930 @default.
- W3034878846 doi "https://doi.org/10.1016/j.measurement.2020.108071" @default.
- W3034878846 hasPublicationYear "2020" @default.
- W3034878846 type Work @default.
- W3034878846 sameAs 3034878846 @default.
- W3034878846 citedByCount "36" @default.
- W3034878846 countsByYear W30348788462021 @default.
- W3034878846 countsByYear W30348788462022 @default.
- W3034878846 countsByYear W30348788462023 @default.
- W3034878846 crossrefType "journal-article" @default.
- W3034878846 hasAuthorship W3034878846A5012062348 @default.
- W3034878846 hasAuthorship W3034878846A5037433861 @default.
- W3034878846 hasAuthorship W3034878846A5038681658 @default.
- W3034878846 hasAuthorship W3034878846A5051324852 @default.
- W3034878846 hasBestOaLocation W30348788461 @default.
- W3034878846 hasConcept C105795698 @default.
- W3034878846 hasConcept C11413529 @default.
- W3034878846 hasConcept C119857082 @default.
- W3034878846 hasConcept C124101348 @default.
- W3034878846 hasConcept C134306372 @default.
- W3034878846 hasConcept C136886441 @default.
- W3034878846 hasConcept C144024400 @default.
- W3034878846 hasConcept C150899416 @default.
- W3034878846 hasConcept C153180895 @default.
- W3034878846 hasConcept C154945302 @default.
- W3034878846 hasConcept C165064840 @default.
- W3034878846 hasConcept C177148314 @default.
- W3034878846 hasConcept C188441871 @default.
- W3034878846 hasConcept C19165224 @default.
- W3034878846 hasConcept C2776434776 @default.
- W3034878846 hasConcept C33923547 @default.
- W3034878846 hasConcept C41008148 @default.
- W3034878846 hasConcept C50644808 @default.
- W3034878846 hasConcept C95623464 @default.
- W3034878846 hasConceptScore W3034878846C105795698 @default.
- W3034878846 hasConceptScore W3034878846C11413529 @default.
- W3034878846 hasConceptScore W3034878846C119857082 @default.
- W3034878846 hasConceptScore W3034878846C124101348 @default.
- W3034878846 hasConceptScore W3034878846C134306372 @default.
- W3034878846 hasConceptScore W3034878846C136886441 @default.
- W3034878846 hasConceptScore W3034878846C144024400 @default.
- W3034878846 hasConceptScore W3034878846C150899416 @default.
- W3034878846 hasConceptScore W3034878846C153180895 @default.
- W3034878846 hasConceptScore W3034878846C154945302 @default.
- W3034878846 hasConceptScore W3034878846C165064840 @default.
- W3034878846 hasConceptScore W3034878846C177148314 @default.
- W3034878846 hasConceptScore W3034878846C188441871 @default.
- W3034878846 hasConceptScore W3034878846C19165224 @default.
- W3034878846 hasConceptScore W3034878846C2776434776 @default.
- W3034878846 hasConceptScore W3034878846C33923547 @default.
- W3034878846 hasConceptScore W3034878846C41008148 @default.
- W3034878846 hasConceptScore W3034878846C50644808 @default.
- W3034878846 hasConceptScore W3034878846C95623464 @default.
- W3034878846 hasFunder F4320321001 @default.
- W3034878846 hasLocation W30348788461 @default.
- W3034878846 hasOpenAccess W3034878846 @default.
- W3034878846 hasPrimaryLocation W30348788461 @default.
- W3034878846 hasRelatedWork W2743258233 @default.
- W3034878846 hasRelatedWork W2771515600 @default.
- W3034878846 hasRelatedWork W2900180889 @default.
- W3034878846 hasRelatedWork W2997969508 @default.