Matches in SemOpenAlex for { <https://semopenalex.org/work/W3034888975> ?p ?o ?g. }
- W3034888975 endingPage "227" @default.
- W3034888975 startingPage "217" @default.
- W3034888975 abstract "Hydrogels are commonly used in regenerative medicine for the delivery of growth factors (GFs). The spatial and temporal presentations of GFs are critical for directing regenerative processes, yet conventional hydrogels do not enable such control. We have developed a composite hydrogel, termed an acoustically-responsive scaffold (ARS), where release of a GF is non-invasively and spatiotemporally-controlled using focused ultrasound. The ARS consists of a fibrin matrix doped with a GF-loaded, phase-shift emulsion. The GF is released when the ARS is exposed to suprathreshold ultrasound via a mechanism termed acoustic droplet vaporization. In this study, we investigate how different spatial patterns of suprathreshold ultrasound can impact the biological response upon in vivo implantation of an ARS containing basic fibroblast growth factor (bFGF). ARSs were fabricated with either perfluorohexane (bFGF-C6-ARS) or perflurooctane (bFGF-C8-ARS) within the phase-shift emulsion. Ultrasound generated stable bubbles in bFGF-C6-ARS, which inhibited matrix compaction, whereas transiently stable bubbles were generated in bFGF-C8-ARS, which decreased in height by 44% within one day of implantation. The rate of bFGF release and distance of host cell migration were up to 6.8-fold and 8.1-fold greater, respectively, in bFGF-C8-ARS versus bFGF-C6-ARS. Ultrasound increased the formation of macropores within the fibrin matrix of bFGF-C8-ARS by 2.7-fold. These results demonstrate that spatially patterning suprathreshold ultrasound within bFGF-C8-ARS can be used to elicit a spatially-directed response from the host. Overall, these findings can be used in developing strategies to spatially pattern regenerative processes. STATEMENT OF SIGNIFICANCE: Hydrogels are commonly used in regenerative medicine for the delivery of growth factors (GFs). The spatial and temporal presentations of GFs are critical for directing regenerative processes, yet conventional hydrogels do not enable such control. We have developed a composite hydrogel, termed an acoustically-responsive scaffold (ARS), where GF release is non-invasively and spatiotemporally-controlled using focused ultrasound. The ARS consists of a fibrin matrix doped with a phase-shift emulsion loaded with GF, which is released when the ARS is exposed to ultrasound. In this in vivo study, we demonstrate that spatially patterning ultrasound within an ARS containing basic fibroblast growth factor (bFGF) can elicit a spatially-directed response from the host. Overall, these findings can be used in developing strategies to spatially pattern regenerative processes." @default.
- W3034888975 created "2020-06-19" @default.
- W3034888975 creator A5014608171 @default.
- W3034888975 creator A5032302705 @default.
- W3034888975 creator A5036990467 @default.
- W3034888975 creator A5037047329 @default.
- W3034888975 creator A5049859346 @default.
- W3034888975 creator A5054025794 @default.
- W3034888975 creator A5063238318 @default.
- W3034888975 creator A5063771849 @default.
- W3034888975 creator A5064991115 @default.
- W3034888975 creator A5076864826 @default.
- W3034888975 creator A5090910003 @default.
- W3034888975 date "2020-09-01" @default.
- W3034888975 modified "2023-10-06" @default.
- W3034888975 title "Spatially-directed cell migration in acoustically-responsive scaffolds through the controlled delivery of basic fibroblast growth factor" @default.
- W3034888975 cites W1583064681 @default.
- W3034888975 cites W1615617154 @default.
- W3034888975 cites W1866200213 @default.
- W3034888975 cites W1919750296 @default.
- W3034888975 cites W1970935015 @default.
- W3034888975 cites W1984914037 @default.
- W3034888975 cites W1994702880 @default.
- W3034888975 cites W1996747774 @default.
- W3034888975 cites W2004536646 @default.
- W3034888975 cites W2013546498 @default.
- W3034888975 cites W2022961329 @default.
- W3034888975 cites W2031070589 @default.
- W3034888975 cites W2039579573 @default.
- W3034888975 cites W2047849605 @default.
- W3034888975 cites W2053146427 @default.
- W3034888975 cites W2053650493 @default.
- W3034888975 cites W2054400934 @default.
- W3034888975 cites W2062136145 @default.
- W3034888975 cites W2064076313 @default.
- W3034888975 cites W2068237706 @default.
- W3034888975 cites W2073919438 @default.
- W3034888975 cites W2075322083 @default.
- W3034888975 cites W2077082767 @default.
- W3034888975 cites W2081162544 @default.
- W3034888975 cites W2087018283 @default.
- W3034888975 cites W2098799479 @default.
- W3034888975 cites W2120189687 @default.
- W3034888975 cites W2120413086 @default.
- W3034888975 cites W2128695989 @default.
- W3034888975 cites W2137271433 @default.
- W3034888975 cites W2137281934 @default.
- W3034888975 cites W2142791646 @default.
- W3034888975 cites W2156713309 @default.
- W3034888975 cites W2156766018 @default.
- W3034888975 cites W2164738650 @default.
- W3034888975 cites W2297776087 @default.
- W3034888975 cites W2319652053 @default.
- W3034888975 cites W2320843948 @default.
- W3034888975 cites W2325727928 @default.
- W3034888975 cites W2472932079 @default.
- W3034888975 cites W2526255052 @default.
- W3034888975 cites W2529736514 @default.
- W3034888975 cites W2560935337 @default.
- W3034888975 cites W2624094462 @default.
- W3034888975 cites W2745585661 @default.
- W3034888975 cites W2804597589 @default.
- W3034888975 cites W2885987222 @default.
- W3034888975 cites W2950184818 @default.
- W3034888975 cites W2969153115 @default.
- W3034888975 cites W3013212927 @default.
- W3034888975 doi "https://doi.org/10.1016/j.actbio.2020.06.015" @default.
- W3034888975 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7423759" @default.
- W3034888975 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32553916" @default.
- W3034888975 hasPublicationYear "2020" @default.
- W3034888975 type Work @default.
- W3034888975 sameAs 3034888975 @default.
- W3034888975 citedByCount "15" @default.
- W3034888975 countsByYear W30348889752021 @default.
- W3034888975 countsByYear W30348889752022 @default.
- W3034888975 countsByYear W30348889752023 @default.
- W3034888975 crossrefType "journal-article" @default.
- W3034888975 hasAuthorship W3034888975A5014608171 @default.
- W3034888975 hasAuthorship W3034888975A5032302705 @default.
- W3034888975 hasAuthorship W3034888975A5036990467 @default.
- W3034888975 hasAuthorship W3034888975A5037047329 @default.
- W3034888975 hasAuthorship W3034888975A5049859346 @default.
- W3034888975 hasAuthorship W3034888975A5054025794 @default.
- W3034888975 hasAuthorship W3034888975A5063238318 @default.
- W3034888975 hasAuthorship W3034888975A5063771849 @default.
- W3034888975 hasAuthorship W3034888975A5064991115 @default.
- W3034888975 hasAuthorship W3034888975A5076864826 @default.
- W3034888975 hasAuthorship W3034888975A5090910003 @default.
- W3034888975 hasBestOaLocation W30348889752 @default.
- W3034888975 hasConcept C127413603 @default.
- W3034888975 hasConcept C136229726 @default.
- W3034888975 hasConcept C137738243 @default.
- W3034888975 hasConcept C1491633281 @default.
- W3034888975 hasConcept C170493617 @default.
- W3034888975 hasConcept C192562407 @default.
- W3034888975 hasConcept C2775960820 @default.
- W3034888975 hasConcept C2777587049 @default.
- W3034888975 hasConcept C2780381497 @default.